

Grid Guidelines and Overview

Steve Klausmeyer Cessna Aircraft Company

Medium Density Mesh Characteristics

- Wing
 - Leading edge $DS \sim 0.1\%$ chord
 - TE base defined by 8 cells
 - Spanwise spacing at root ~1.0% semispan
 - Spanwise spacing at tip ~0.1% semispan
- Farfield located $\sim 100 C_{REF}$ for all grid levels
- Viscous wall normal spacing
 - y + = 1.0
 - Stretching ratio <= 1.25</p>
- Fuselage
 - Cell size near nose and after-body $\sim 2.0\% C_{REF}$
- Reference
 - Vassberg, DeHaan, Sclafani, "Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations", AIAA 2003-4124

Suggested Grid Sizes

- WB 1.3M 4.0M 12.0M nodes
- WBNP 2.0M 6.0M 18.0M nodes

Supplied Meshes

- Unstructured
 - ICEM
 - NASA Langley/VGRID (5)
 - DLR/CENTAUR (2)
 - SWANSEA (1)
- Structured
 - ICEM (8)
 - Boeing/Seattle (2)
- Overset
 - Boeing/Long Beach (2)

Other Meshes

- SAUNA (1)
- ICEM tetra/prism (1)
- PUFGG (1)
- TAS-MESH(1)

Structured Multi-block Meshes ICEM

ICEM Hexa Mesh Characteristics

- C Topology around the wing
- Fine, Medium and Coarse grids
- 4 Levels of Multigrid (level 0, 1, 2 & 3) Coarse mesh has only 3 levels (level 0, 1 & 2) of Multigrid
- Viscous Grid with Near wall Spacing = 0.001

Wing-Body **Fine Mesh**

0

Hex Mesh C – Topology for wing Medium Mesh

5.5 Million Hexas

10 Million Hexas

О

Coarse Mesh

• 3.3 Million Hexas

Wing-Body-Nacelle-Pylon

Fine Mesh

13 7 Million Nodes (13 5M Hexas)

Wing

C – Topology for Nacelle &

Coarse Mesh

4.6 Million Nodes (4.5M Hexas)

Medium Mesh

8.5 Million Nodes (8.3M Hexas)

Structured Multi-block Meshes Boeing/BCA-Advancing Front

Structured Multi-Block - Boeing

- H-H topology
- WB: 3.9M 13.2M nodes

Click

Tetrahedral Meshes NASA Langley/VGRID

Tetrahedral Grids for DLR-F6 DPW2 Configuration For <u>Cell-Centered Codes</u> with Wall Function - VGRIDns

	WB	WBNP
Coarse	1,409,689 cells	2,152,607 cells
Avg. ∆n _{c1} =0.020	Avg. y+ _{cell} = 13.1	Avg. y+ _{cell} = 12.9
Medium	3,901,658 cells	5,912,596 cells
Avg. ∆n _{c1} =0.013	Avg. y+ _{cell} = 8.9	Avg. y+ _{cell} = 8.7
Fine Avg. ∆n _{c1} =0.009	11,347,301 cells Avg. y+ _{cell} = 5.9	17,193,275 cells

Grids generated by Jonathon Nehrbass, intern in the Configuration Aerodynamics Branch, NASA LaRC under direction of Neal Frink

Tetrahedral Grids for DLR-F6 DPW2 Configuration For <u>Node-Centered</u> Codes - VGRIDns

	WB	WBNP
Coarse	1,121,301 nodes	1,827,470 nodes (10,715,204
Avg ∆n _{n1} =0.00144	(6,558,758 cells)	cells)
Medium	3,010,307 nodes	4,751,207 nodes (27,875,222
Avg ∆n _{n1} =0.001	(17,635,283 cells)	cells)
Fine	9,133,352 nodes (53,653,279	10,278,588 nodes (60,412,948
Avg ∆n _{n1} =0.000695	cells)	cells)

Grids generated by Beth Lee-Rausch, Computational Modeling & Simulation Branch, NASA LaRC

e.m.lee-rausch@larc.nasa.gov

DLR-F6 WB Tetrahedral Viscous Grids for <u>Cell-Centered</u> Solvers

neal.t.frink@nasa.gov

DLR-F6 WBNP Tetrahedral Viscous Grids for <u>Cell-Centered</u> Solvers

Unstructured Meshes DLR/CENTAUR

Unstructured - DLR/CENTAUR

- WB: 2.4M 3.2M 4.1M (adapted)
- WBNP: 3.7M 4.8M 6.4M (adapted)

Overset Meshes Boeing ZONI3G-SURGRD-HYPGEN-LEGRID-PEGASUS5

Overset Mesh Sizes

- WB: 1.97M 6.86M 23.15M nodes
- WBNP: 3.11M 10.78M 35.95M nodes

Overset Mesh

Overset Mesh Components

Overset Mesh Components

Summary

- 8 Gridsets provided for participants
 - 5 unstructured
 - 2 structured multi-block
 - 1 overset
- 4 Participants supplied their own meshes
- Wide variety of mesh sizes.
 - 3x step-up not strictly obeyed (machine limitations, etc.)

backup

Grid Generation System VGRIDns

- Developed at the NASA LaRC
- Generates triangular surface and tetrahedral volume grids
- Based on marching techniques:
 - **O** advancing-front method (AFM) for "Euler" grids (Löhner, 1988)
 - advancing-layers method (ALM) for "viscous" grids (Pirzadeh, 1993)

• Salient features:

- **O** smooth grids by means of sources and solving elliptic PDE
- O thin-layer "viscous" grids
- O anisotropic grid stretching
- O restart capability
- local remeshing

grid post-processing and adaptive refinement

Chordwise Spacing at WB Crank Station DLRF6: Tetrahedral <u>Cell-Centered</u> Grids

neal.t.frink@nasa.gov

DLR-F6 Unstructured WB grids for Cell-Based Solvers

Grid Generation by VGRIDns

Grid statistics:	Coarse	Medium	Fine
•Tetrahedral cells∶	1,409,689	3,901,658	11,347,301
•Total grid nodes	246,020	675,946	1,954,524
•Total Bndry triangles	33,408	66,022	135,482
•Triangles on no- slip surfaces	24,638	49,919	104,180
• Tet cells in viscous layer	524,213	1,051,794	2,017,809
•Nodes in the viscous layers:	103,973	208,210	404,276
•T.E. patches	2	2	2

 $\Delta n_{j} = \Delta n_{1} (1 + a(1 + b)^{j-1})^{j-1}$

Grid spacings:	Coarse	Medium	Fine
% chordwise spacing at LE	0.90	0.60	0.35
% chordwise spacing at TE	0.494	0.29	0.185
Avg <u>cell</u> y ⁺ Avg <u>node</u> y ⁺ (sized for wall function)	13 52	9 36	6 24
Nominal BL cells	16	18	20
Init 'viscous' wall spacing (Δn_1)	0.0855	0.057	0.038
Geometric stretching rates <i>a</i> and <i>b</i>	0.456, 0.07	0.456, 0 07	0.456, 0.07
Outer boundary box	106 c _{ref}	106 c _{ref}	106 c _{ref}

Grids generated by Jonathon Nehrbass, intern in the Configuration Aerodynamics Branch, NASA LaRC under direction of Neal Frink

DLR-F6 Unstructured WB grids for <u>Node-Based</u> Solvers

Grid Generation by VGRIDns

Grid statistics:	Coarse	Medium	Fine
Total grid nodes	1,121,301	3,010,307	9,133,352
Tetrahedral cells:	6,558,758	17,635,283	53,653,279
Nodes on no-slip boundaries	25,104	55,069	118,903
Nodes in viscous layers:	674,338	1,462,475	3,975,437
Tet cells in viscous layer	3,826,019	8,313,126	22,866,866
T.E. patches	2	4	6

 $\Delta n_{i} = \Delta n_{1} (1 + a(1 + b)^{j-1})^{j-1}$

Grid spacings:	Coarse	Medium	Fine
Nominal BL nodes	26	26	33
Init 'viscous' wall spacing (Δn_1)	0.00144	0.001	0.000695
Geometric stretching rates <i>a</i> and <i>b</i>	0.2, 0.02	0.2, 0.02	0.13, 0.02
Outer boundary box	106 c _{ref}	106 c _{ref}	106 c _{ref}

Grids generated by Beth Lee-Rausch, Computational Modeling & Simulation Branch, NASA LaRC