2nd AIAA CFD Drag Prediction Workshop

NLR results obtained using the multiblock structured flow solver ENSOLV

O.J. Boelens

Fluid Dynamics Division Department of Computational Fluid Dynamics and Aero-elasticity National Aerospace Laboratory, NLR The Netherlands

NLR results (ENSOLV) CFD Method

- ENSOLV (part of NLR's flow simulation system ENFLOW)
 - Time-dependent Reynolds-averaged Navier-Stokes equations
 - Cell-centred, central difference, finite volume scheme
 - (Pseudo) time integration by explicit Runge-Kutta scheme to obtain steady-state solution
 - Artificial dissipation (scalar and matrix) to prevent odd-even decoupling
 - Local time stepping, multi-grid and residual averaging to accelerate convergence

NLR results (ENSOLV) CFD Method

- ENSOLV (part of NLR's flow simulation system ENFLOW)
 - Original k- ω turbulence model as proposed by Wilcox
 - Slight modification by introduction of 'cross diffusion' term to eliminate free-stream dependency of ω
 - Solve $\tau = 1/(\omega + \omega_0)$ instead of ω , to remove singular behaviour of ω at solid walls
 - Production term in k-equation has been limited to prevent unphysical high values of k near stagnation point

NLR results (ENSOLV) Grid

Coarse: 3.3 M elements

Medium: 5.5 M elements

Coarse: 4.5 M elements

Medium: 8.3 M elements

Fine: 10 M elements

Fine: 13.7 Melements

ICEM CFD multi-block C-topology grids for wing/body and wing/body/pylon/nacelle

NLR results (ENSOLV) Solution information

		Level 1	Level 2	Level 3	Const. CL	CPU (h)	Mem (GByte)
wb	coarse	1 500	11500) (11 MG))	11000 (11 MG))	1250 (1MG)	13.5	2.5
	medium	1 500)	1 500) ((1 MG))	11000 (11 MG))	1 <u>250 (1MG)</u>	<u>22.9</u>	4.1
	fine	1 500)	1 500	7/50	1000	1 8.5	77.5
wbnp	coarse	1 500)	1000		1250	27.8	3.3
	medium	1 500)	1 500)	1 000	1 2 50)	47.1	5.4
	fine	1 500)	1 500	1000	1 250)	66.4	8.4

- **Computer platform: NLR's NEC SX-5/8B parallel vector super computer**
 - Operating system: SUPER-UX sx5 11.1 E SX-5/8B
 - Compiler: FORTRAN90/SX Version 2.45 for SX-5
- Number of processors used (1-6) was such that complete simulation could be carried out within one night (12 h)

NLR results (ENSOLV) Case 1: Single point grid convergence study

experiment wing/body
 experiment wing/body/nacelle/pylon
 case l: wing/body, coarse grid, fully turbulent
 case l: wing/body, medium grid, fully turbulent
 case l: wing/body/nacelle/pylon, coarse grid, fully turbulent
 case l: wing/body/nacelle/pylon, coarse grid, fully turbulent
 case l: wing/body/nacelle/pylon, medium grid, fully turbulent
 case l: wing/body/nacelle/pylon, medium grid, fully turbulent
 case l: wing/body/nacelle/pylon, medium grid, fully turbulent
 case l: wing/body/nacelle/pylon, fine grid, fully turbulent

Mach = 0.75

- Reynolds Number = 3x10⁶
- Lift Coefficient = 0.500±0.001
- "Fully turbulent" solution

 Coarse:
 0.0046

 Medium:
 0.0054

 Fine:
 0.0051

Experiment: 0.0043

NLR results (ENSOLV) **Case 1: Single point grid convergence study (wb)**

NLR results (ENSOLV) Case 1: Single point grid convergence study (wbnp)

Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR NLR results (ENSOLV) Case 1: Single point grid convergence study (wb) Coarse: 3.3 M elements 1.5 E 1.5 r Coarse: 3.3 M elements Medium: 5.5 M elements Medium: 5.5 M elements Fine: 10 M elements 1.25 1.25 Fine: 10 M elements 0.75 0.75 0.5 0.5 **ບ**ີ 0.25 **ບ**ີ 0.25 0 0 -0.25 -0.25 -0.5 -0.5 -0.75 -0.75 -1 _* 0 0.25 0.5 0.75 0 0.25 0.5 0.75 x/c x/c Experiment y/b=0.331 y/b=0.514 Alpha=0.490 CL=0.4984 2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando

NLR results (ENSOLV) **Trip** location

Lower surface

- 25 % chord

Upper surface

- 5 % chord at root

- 15 % chord at

- 5% chord at tip

η=0.844

- 15 % chord at kink

NLR results (ENSOLV) Case 2: Drag Polar

experiment wing/body

 ∇

experiment wing/body/nacelle/pylon

case II: wing/body, medium grid, tripped

case II: wing/body/nacelle/pylon, medium grid, tripped

• Mach = 0.75

- Reynolds Number = 3x10⁶
 - Angle of Attack = -3, -2, -1.5, -1, 0, 1, 1.5°
- "Tripped" solution

NLR results (ENSOLV) Case 2: Drag Polar (wb)

NLR results (ENSOLV) Case 3: Effect of transition

experiment wing/body

- - experiment wing/body/nacelle/pylon
- ▼ case I: wing/body, medium grid, fully turbulent
- case III: wing/body, medium grid, tripped

Mach = 0.75

- Reynolds Number = 3x10⁶
- Lift Coefficient = 0.500±0.001
- "Fully turbulent" vs. "Tripped" solution

C_{p} installation

Turbulent: 0.0054 Tripped: 0.0054

- Experiment: 0.0043
- 2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando

NLR results (ENSOLV) Case 3: Effect of transition

