2nd AIAA Drag Prediction Workshop Results Using NES

Stephane Seror, Theodor Rubin, Sergey Peigin Engineering Division Aerodynamic Dept., Group CFD Intl. Airport Ben-Gurion,Lod, Israel

> and Boris Epstein Academic College Tel-Aviv, Israel

> > SOLN= 1

DLR – F6 M=0.75 Re_cref=3 million

NES CODE GENERAL DESCRIPTION

- Reynolds-averaged Navier-Stokes solver for 3D geometries
- Spalart-Allmaras & Baldwin-Lomax turbulence models
- Multiblock / Multiface structured grid
- •High accuracy ENO scheme free of artificial viscosity
- Multigrid approach with defect correction for robust speed-up
- •High Parallel Efficiency on cluster of Pentium 1000Mhz
- Interface to graphical postprocessor OMNI3D[™] (Analytical Methods,Inc.)

SOLVER INFORMATION

Method Name:	NES Multiblock Structured Navier-Stokes Solver		
Basic Algorithm:	Multigrid FAS + ENO Defect Correction		
Turbulence Model:	Spalart-Allmaras		
Miscellaneous:	No tuning parameters !		

<u>GRID INFORMATION</u>

Grid-Generator Name:	ICEM-CFD	
Grid Type:	Structured Multiblock Point-to-Point Grids	
COARSE GRID SIZE	WB (0.5M)	WBNP (1.3M)
Zones:	73	228
Field Cells:	467120	1215920
MEDIUM GRID SIZE	WB (4M)	WBNP (10.4M)
Zones:	73	228
Field Cells:	3736960	9727360

SOLUTION INFORMATION

Computer Platform:

- 1. Linux PC's Multiprocessors cluster of HP Netserver LP1000R 1GHz
- 2. 142 CPU Processor Pentium 3 2GB RAM
- 3. Full duplex 100Mbps ETHERNET interface
- 4. MOSIX software package enhances the LINUX kernel with cluster computing capabilities

Operating System:	Linux + MOSIX + PVM
Compiler:	С
Run Time Wall-Clock:	WB 4M=2days on 60 Processors
	WBNP 10.4M=2days+17hours on 142 Processors
Memory Requirements:	WB 4M ~224MB per processor Total 1.3GB RAM
	WBNP 10.4M ~ 240MB per processor Total 3.5GB RAM

ΑΒΧΔΕ

Split of original grid to allow one type of BC per block face

Miscellaneous:

Rounded wing-tip used

Clustering of panels at the wing-tip, the pylon trailing edge, edge of the nacelle to overcome issues of convergence of the solution

ΑΒΧΔΕ

Backward-facing step flow configuration: after clustering

ΑΒΧΔΕ

2nd AIAA DRAG PREDICTION WORKSHOP-JUNE 2003

LIFT VERSUS AoA - DLR_F6 (NACELLE ON/OFF)

GRID CONVERGENCE

2nd AIAA DRAG PREDICTION WORKSHOP - JUNE 2003 DRAG POLAR DLR_F6 (NACELLE OFF) 0.8 0.7 0.6 0.5 0.4 ರ 0.3 0.2 0.1 -- WT data ---- NES (62500 pts) n -- NES (0.5m pts) -0.1 -- NES (4m pts) -0.2 0.01 0.015 0.02 0.035 0.04 0.045 0.025 0.03 0.05 CD

2nd AIAA Drag Prediction Workshop, Orlando, Florida, USA, 21-22 June 2003

Wing-body junction: Bubble area (qualitative description)

2nd AIAA Drag Prediction Workshop, Orlando, Florida, USA, 21-22 June 2003

Pylon-nacelle reverse flow areas

CONCLUSIONS

- on the basis of comparison with experiment good accuracy has been presented already on relative coarse grids
- formally proof of grid convergence is not presently demonstrated
- according to our current experience using NES vith various configurations we do not expect that the provided fine grid would significantly change the results
- some geometry areas (corners, steps, tip, pylon) need better grid resolution than in the baseline grid

Error of convergence at the nacelle backward-facing step Control of problem in the solution convergence with the SA turbulent index

ΑΒΧΔΕ

h2/h1 .18165e−06 7.33419e-07 ∦Z f6 medium Mar 11 19:17:05 2003 NES_C PREP VERSION 3D MULTIBLOCK/MULTIFACE/PARALLEL/TURBULENT 1.2 - IAI/OM/13D SOLN=1 skewness Å₹ f6 medium Mar 11 19 17 46 2003 Mar 11 19 17 46 2003 Nes_c PREP VERSION 3D MULTIBLOCKMULTIFACE/PARALLEL/TURBULENT 1 2 - TAI/OMMISD SOLN=1 ΑΒΧΔΕ

Preprocessor control of grid quality

GRID CONVERGENCE

ΑΒΧΔΕ

2nd AIAA DRAG PREDICTION WORKSHOP-JUNE 2003

PITCH MOMENT VERSUS AoA - DLR_F6 (NACELLE OFF)

