OVERFLOW Drag Prediction for the DLR-F6 Wing / Body / Nacelle / Pylon Transport Configuration

Tony J. Sclafani, Mark A. DeHaan, John C. Vassberg

Phantom Works The Boeing Company Huntington Beach, California, USA

2nd AIAA CFD Drag Prediction Workshop

Orlando, Florida

June 21-22, 2003

Outline

- Flow Solver / Grid Information
- Computing Platform / Solution Information
- Convergence Histories
- Case 1 Grid Convergence Study
- Case 2 Drag Polars
 - Turb Model / Scheme Study
 - Surface Streamlines & Cp's
 - Nacelle / Pylon Installation Drag
- Case 3 Tripped vs Fully Turbulent
- Conclusions

OVERFLOW MPI Version 1.8s

- a) Spalart-Allmaras with Roe Upwind (Cases 1, 2, and 3)
- b) Spalart-Allmaras with Central Difference (Case 2)
- c) Baldwin-Barth with Central Difference (Case 2)

Structured Over-Set Grids (ref. AIAA Paper 2003-4124)

	WB	WBNP
Grid	(12 zones)	(23 zones)
Coarse	1.9 M	3.1 M
Medium*	6.8 M	10.7 M
Fine	23.1 M	35.8 M

*Note: The medium grid is typical for drag-quality design studies.

Computing Platform / Solution Information

Parallel Processing Done on a PC Cluster

- Linux Operating System
- 178 Dual-Processor Nodes with 2 GB of Memory Each
- WB-Medium Grid Run on 8 Processors
 - ~ 1.9 hours per 100 fine grid iterations
- WBNP-Medium Grid Run on 10 Processors
 - \sim 2.5 hours per 100 fine grid iterations

Solutions

- Case 1: 8 solutions, fully turbulent, SA-Upw
- Case 2: 29 solutions, transition, SA-Upw/SA-Cen/BB-Cen
- Case 3: 4 solutions, SA-Upw, taken from Cases 1 & 2

WB Convergence Histories

- Baldwin-Barth solutions were oscillatory
 - Particularly with thin-layer viscous terms in L only.
- Turning on all viscous terms reduced amplitude of oscillation
- With all viscous terms on, computation time increased about 50% per iteration

WBNP Convergence Histories

- All WBNP solutions were oscillatory (even with all viscous terms turned on).
- Final forces and moment values were obtained from a linear fit of the numerical data.

Case 1 – WB Grid Convergence Results

Note: The only differences between the baseline & modified coarse grids are the L=2 surfs.

Case 1 – WBNP Grid Convergence Results

Note: The only differences between the baseline & modified coarse grids are the L=2 surfs.

Case 2 – WB Drag Polars

Case 2 – Side-of-Body Flow Viz

Medium WB Grid with Transition: Mach = 0.75, C_L = 0.50, R_N = 3.0 M

Source	BL _{bub} (mm)	Δ (mm)
ONERA	90.9*	-
OVERFLOW, SA-Upwind	98.2	7.3
OVERFLOW, SA-Central	112.3	21.4
OVERFLOW, BB-Central	109.7	18.8

* Scaled off photo

Case 2 – WB Surface Cp and Streamlines

Medium Grid w/ Transition, Mach = 0.75, SA-Upwind

Alpha Sweep →

Case 2 – WB C_L and C_M Curves

Case 2 – WB Pressure Comparison

Case 2 – WB Spanload Comparison

DPW-II June 2003, Orlando, FL

Sclafani, DeHaan, Vassberg 14

Case 2 – WBNP Drag Polars

Medium WBNP Grid with Transition:

Mach = 0.75, C_L = 0.50, R_N = 3.0 M

Case 2 – WBNP Surface Cp and Streamlines

Medium Grid with Transition – SA Upwind

Alpha Sweep →

Case 2 – WBNP C_L and C_M Curves

Case 2 – WBNP Pressure Comparison

DPW-II June 2003, Orlando, FL

OVERFLOW Drag Predictions

Case 2 – WBNP Pressure Comparison

DPW-II June 2003, Orlando, FL

OVERFLOW Drag Predictions

Case 2 – NP Installation Drag

Case 3 – Tripped vs Fully Turbulent

Mach = 0.75, R_N = 3.0 M, C_L = 0.50, SA-Upwind Results

Medium WB Grid:

Туре	lpha (deg)	C _D (counts)	C _M
Tripped (5/15/15/5)	0.050	276.9	-0.14246
Fully Turbulent	0.159	288.6	-0.13673
Λ =	0 1090	117 counts	0.00573

Medium WBNP Grid:

Туре	α (deg)	C _D (counts)	C _M
Tripped (5/15/15/5)	0.682	336.0	-0.13145
Fully Turbulent	0.781	342.7	-0.12586
⊿ =	0.099°	6.7 counts	0.00559

Conclusions

Case 1 – Grid Convergence Study

- > Coarse grids lacked constant spacing for first two cells off surface.
 - Effects skin friction (8.6 count diff for WB and 10.2 counts for WBNP).
- Medium grids are adequate in size for drag calculations.

Case 2 – Drag Polars

- > SA-Upwind WB polar shape was similar to the test data's.
- All methods produced exaggerated side-of-pylon separation which caused a rotation and/or shift of the polar.
- > Nacelle/pylon increment off by 16 counts (amount of shift in WB polar).

Case 3 – Tripped vs Fully Turbulent

- > Going from fully turbulent to tripped at $C_L = 0.50$ reduces:
 - WB drag by 11.7 counts
 - WBNP drag by 6.7 counts

Based on recent OVERFLOW drag analyses of inservice Boeing aircraft, these DLR-F6 results are in poor agreement with the test data.

- Separated flow regions are larger than normal.
- Possible inconsistencies between test data and CFD.

Additional runs made just prior to the workshop include a 2-equation turbulence model (SST).

- > Implementation in OVERFLOW needs to be tested.
- > Preliminary results show a minor improvement.

Additional Runs – WB Cp Comparison

DPW-II June 2003, Orlando, FL

OVERFLOW Drag Predictions

Additional Runs – WB Cp Comparison, α-Match

OVERFLOW Drag Predictions