

OALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Drag Prediction with the Zeus/CFL3D System

Edward N. Tinoco Enabling Technology & Research Boeing Commercial Airplanes P.O. Box 3707 MC 67-LK Seattle, WA 98124-2207

BOEING

CALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Objective

Investigate the use of a "Production Navier-Stokes Analysis System" for CFD Drag Prediction

-Major interest is in the prediction of drag increments

-Use "standard" processes as much as possible

Acknowledgement

None of this work would have been possible without the considerable contributions of:

N. Jong Yu Tsu-Yi Bernard Su Tsong-Jhy Kao Emanuel R Setiawan

(BOEING

CFD Drag Prediction Workshop

Orlando, Florida, June 2003

ZEUS/CFL3D

Driver for Surface Grid Generation, Volume Grid Generation, Navier-Stokes Analysis, and Post-processing

CFD Drag Prediction Workshop

Orlando, Florida, June 2003

CFL3D – Thin Layer Navier-Stokes Code

- Developed at NASA Langley (Jim Thomas, Kyle Anderson, Bob ٠ Biedron, Chris Rumsey, & ...)
- Finite volume ۲
- Upwind biased and central difference •
- Multigrid and mesh sequencing for acceleration ٠
- Multiblock with 1-1 blocking, patched grid, and overlap-grid ٠
- Numerous turbulence models •
 - Spalart-Almaras SA Model
 - Menter's k SST Model
- Time accurate with dual-time stepping ۲
- Runs efficiently on parallel machines through MPI ٠

Limited comparisons also made with:

- TLNS3D Thin Layer Navier-Stokes Code
- TRANAIR Full Potential + Coupled Boundary Layer

BOEING

CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Typical Wing-Body Grid - 3.9 Million Cells

CALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Typical Wing-Body-Nacelle-Pylon Grid – 6.2 Million Cells

CALA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

F6 Wing-Body Lift and Pitching Moment

CALAA 2nd CFD Drag Prediction Workshop

CALAA 2nd CFD Drag Prediction Workshop

CALAA 2nd CFD Drag Prediction Workshop

OALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

F6 Wing-Body – Grid Convergence Study

I Inoco

OALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

F6 Wing-Body – Convergence History

BOEING

CALAA 2nd CFD Drag Prediction Workshop

CALA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Wing-Body Drag Polar

CALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Wing-Body Polar Shape

CALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Wing-Body Drag Rise

CALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Wing Pressure Distributions – Wing/Body/Nacelle/Pylon

CALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Why We Did Not Complete Grid Convergence Study for Wing-Body-Nacelle-Pylon

Increasing grid density resulted in excessive flow separation on the inboard side of the nacelle moving the CFD solution further away from the experimental data. Rather than converging on the "correct" solution with increasing grid density our solution was diverging. Grid convergence was meaningless for our code in this case.

BOEING

CALA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Wing and Pylon Pressures

CALA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Drag Polar - Wing-Body vs Wing-Body-Nacelle-Pylon

OALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Drag Rise - Wing-Body & Wing-Body-Nacelle-Pylon

CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Delta Drag Polar Sweep Increment due to Nacelle/Pylon

OALAA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Delta Drag Rise Sweep Increment due to Nacelle/Pylon

CALLA 2nd CFD Drag Prediction Workshop

Orlando, Florida, June 2003

Concluding Remarks

- A deceptively difficult case
 - Miss-match between wing pressure distributions and indicated lift
 - •Flow separation pocket wing upper surface at side of body and on inboard side of pylon on Wing/Body/Nacelle/Pylon configuration
- Good results for the Wing/Body configuration
 - Minimal grid size sensitivity demonstrated
 - •Resulted from consistent gridding strategy
 - •Very important for drag increment prediction
- Disappointing results for Wing/Body/Nacelle/Pylon configuration
 - Excessive sensitivity of CFL3D to flow separation on inboard side of pylon
 - •Better results with a lower order solver (TRANAIR)

You can get the "right" answers for the wrong reasons!!

•Did not complete grid convergence study

•Accurate prediction of difficult flow features is important not only for drag prediction but also for flight stability and control prediction issues

•We still have a lot more work to do!

BOEIND