

2nd Drag Prediction Workshop Results obtained with NAL UPACS

Kazuomi Yamamoto, Ryoji Takaki National Aerospace Laboratory of Japan Kentaro Tanaka Ryoyu Keisan Co., Ltd. and

Ryozo Ito

Daiko Denshi Tsushin, Ltd.

AIAA 2nd CFD Drag Prediction Workshop 21-22 June, 2003

Focus of presentation

Drag prediction accuracy of UPACS

- Grid dependency
 - **NAL grids** and the provided ICEM grids
- Effect of transition
- Effect of thin-layer approximation

NAL UPACS code

- Standard CFD code in NAL
 - Designed to be shared by researchers
- Flow solver of UPACS
 - Cell-centered finite-volume method
 - Multi-block structured grid
 - Roe's flux-difference splitting with MUSCL extrapolation
 - 2nd-order discretization of viscous terms
 - Matrix-free Gauss-Seidel implicit scheme
 - Spalart-Allmaras one-equation turbulence model
 - Transition is specified by a laminar mask where the production term is turned off.
 - Parallelized with MPI
- **Fujitsu PrimePower HPC2500, SPARC64V(1.3GHz) x 1792**
 - 16 32 hours / case for 14M (fine) grid with 99 cpu

Grids

Generated by Gridgen

Multi-block point-to-point matched

Wing-Body	Grid size	Stretching	Cell size [mm]		
	(million)	in B.L	BL 1st-Cell Size	e W-B corner	
coarse	1.2	1.44	0.0018	0.1 - 1.1	
fine	8.7	1.2	0.0008	0.05 - 0.5	
finer	9.0	1.2	0.0008	0.0008	
Wing-Body-	Grid size	Stretching	C		
Nacelle-Pylo	n (million)	in B.L	BL 1st-Cell Size	e W-B corner	W-P corne
coarse	1.9	1.44	0.0018	0.1 - 1.1	0.2 - 0.6
fine	13.7	1.2	0.0008	0.05 - 0.5	0.1 - 0.2
finer	14.7	1.2	0.0008	0.0008	0.05 - 0.0

Corner grid

Fine grid: 13.7 million

Transition location

$C_L - C_D$

UPACS ⇔ Exp.

Within 15 counts difference

- **Installation Drag** about 30 counts larger than experimental result at lower angle of attack
- Grid coarse fine പ് 10 counts of reduction mostly due to pressure.
- Transition - 1

9-10 counts reduction mostly due to friction.

C₁-C_D (M=0.75, Re=3.0e+6, DLR-F6) 0.80 WB WBNP WTT Coarse Fine

7

Grid dependency

Increasing the resolution at corners reduce the drag about 3 - 5 counts.

Effect of transition on Cd

- M=0.75 Re=3.x10⁶
- About 9 counts of reduction due to transition trip

C_L -_, C_L - C_M (Wing-Body)

- C_L is about 0.05 higher
- C_M is 0.02 lower

C_L-_, C_L-C_M (Wing-Body-Nacelle-Pylon)

Effect of grid size on the flow separation at corners

C_L=0.5 Finer grid (14.7 Million)

C_L=0.5 Coarse grid (1.9 Million)

Effect of grid size on Cp

Effect of transition on the flow separation at corners

 $C_L=0.5$ (_= 0.81°) Transition

Effect of transition on Cp

Effect of thin-layer approximation on the flow separation at corners

C_L=0.5 Full-NS

C_L=0.5 Thin-layer Approximation

Effect of thin-layer approximation on Cp

Summary

- Prediction of Aerodynamic characteristics
 - Deviation of predicted drag polar is 15 counts maximum.
 - Nacelle install drag is predicted larger at lower angle of attack.
 - Lift is shifted about 0.05 higher for both cases.
- Corner flow separation
 - Predicted size is much larger compared to experimental one.
 - Affects aerodynamic characteristics strongly.
- Effect of grid
 - Pressure drag is reduced by increasing the number of grid (The surface friction drag does not change much)
 - Grid resolution at the corners affect flow separation.
- Effect of transition
 - Drag is reduced about 10 counts in both cases mostly due to the friction decrease.
 - Less effect on wing surface pressure distribution.
- Effect of thin-layer approximation
 - Thin-layer approximation makes flow separation size smaller.

Appendix

Snapshot of NAL Grid Other Cp distribution Flow separation at lower _

NAL Grid

Grid comparison

Comparison of corner grid

$\alpha = 1.0^{\circ}$ case : Wing-Body-Nacelle-Pylon

Effect of grid on Cp: Wing-Body

Effect of transition on Cp: Wing-Body

Flow separation at lower angle of attack

CL=0.5 (_= 0.81°) Transition

 $= -2^{\circ}$ Transition

