

DPW2 results using Bombardier Full-Aircraft Navier-Stokes Code FANSC

E. Laurendeau, J. Boudreau, P. Piperni Advanced Aerodynamics Department Bombardier Aerospace

D. Parks NEC Solution America

Outline

- FANSC Basic Solver
- DPW1
- DPW2
- Conclusions

FANSC Basic Solver

- Multi-Block Structured grids
- Finite Volume, Cell-Centered, Explicit Runge-Kutta
- Local-Time stepping, FAS, Residual Smoothing (CFL=5)
 - JST and CUSP scheme
 - Full NS terms
 - Spalart-Allmaras and Menter's Turbulence Model
 - FANSC references
 - CASI papers (2001, 2003)
 - Canadian CFD society (CFD 2000)

Outline

- FANSC Basic Solver
- DPW1
- DPW2
- Conclusions

DPW1 (provided grid)

 Distance computation to account for mesh nonorthogonality implemented in FANSC

DPW1 (provided grid)

BOMBARDIER Experience the Extraordinary

6

DPW1 (provided grid)

 Pressures unchanged from previous version; similar to those published by DLR

η **= 33.1%**

EXP FANSC

0.75

η **= 63.6%**

EXP FANSC

0.75

Outline

- FANSC Basic Solver
- DPW1

Conclusions

DPW2 Run Schedule

	V	Ving-Bo	dy	Wing-Body-Engine		
	С	Μ	F	С	Μ	F
ICEM-CFD	X	X	X	x	X	X
BOEING	X			NC		
MBGRID	X	X		X		

 Drag polars (7 alpha runs) for the 6 ICEM-CFD meshes were run on the 32 CPU NEC SX7 Supercomputer in Japan in collaboration with NEC/CRAY

 All other runs ran on the 8-CPU NEC SX6 Supercomputer of Bombardier Aerospace

BOMBARDIER Experience the Extraordina

WB& WBE MBGRID Meshes

- MBGRID mesh with "skin-growth" approach
 - Mixed O-H topology with inner skin (thickness ~4% chord)
 - No geometric modification to CAD surface
- EGRID Elliptic Smoothing to Ensure Orthogonality
- First cell height y+<1, far-field ~ 50 chords</p>

WB-C Effect of Different Grids on Convergence

BOMBARDIER Experience the Extraordinary

WB-C Effect of Different Grids on Convergence

WB-C Alpha Run and CL Runs on MBGRID Mesh

WB-C Effect of Different Grids on CPs

WB-C Y+ on Different Grids

16 BOMBARDIER Experience the Extraordinary

WB-C Separation on different grids

MBGRID

WB-C Effect of Artificial Dissipation

 Pressure distributions obtained with CUSP scheme sharper than those obtained with the JST scheme, as expected

WB-C Effect of Turbulence Model

 Pressure distributions obtained with Spalart-Allmaras turbulence model are as good as those obtained with the k- ω model, as expected for this "attached" flow condition

Wing-Body ICEM-CFD- grid convergence

Convergence issues results in inconsistent data

BOMBARDIEF

Experience the Extraordinary

WB MBGRID- grid convergence

Lift less sensitive to mesh density than drag

WBN Effect of Different Grids

WBN-C Effect of Normal Wall Distance Calculation on ICEM-CFD Meshes

23 BOMBARDIER Experience the Extraordinary

WBN-C Drag Polar with MBGRID

WBN-C Flow Details on FANSC/MBGRID Results

M=0.75	M-0 75
CL=0.5	M = 0.73
Re=3M	$0 = -2^{10}$

Conclusions

Several issues remains, even for wing-body test cases

- Grid attributes influences the results even more so than mesh density on the same grid template
- y+< 1 is a necessary but not sufficient condition
- CL at constant α overpredicted by most codes in DPW1 and our results of DPW2
- Drag polar difficult to obtain with absolute accuracy

WBE test cases issues

- Convergence deterioration, especially since large areas of flow separation are almost always presents near the pylon
- Stiffness of the mesh generation process in wing-pylon-engine area

