

Aerospace Computing Laboratory

Drag Prediction of the DLR-F6 Configuration

Georg May, Dr. Edwin van der Weide, Sriram Shankaran, Prof. Antony Jameson Stanford University

Prof. Luigi Martinelli

Princeton University

2nd AIAA CFD Drag Prediction Workshop, 21-22 June, Orlando, FL

Multi-Block Structured Code FLO107-MB

- Cell-Centered Finite Volume Scheme
- H-CUSP Scheme for Convective Fluxes
- SLIP Construction
- Central Discretization for Viscous Fluxes
- Runge-Kutta Time Stepping
- Multigrid, Implicit Residual Smoothing, Local Time Stepping
- SPMD-Parallel Using MPI

STANFORD UNIVERSITY

Turbulence Modeling

- Wilcox k -// Model
- Segregated (Single Grid)
- Same Algorithm as for Laminar Variables (But Only 1st Order Diffusion)
- Point-Implicit Treatment of Source Terms
- Fully Turbulent Flow

Computer Architectures

- SGI Origin (IRIX 6.5), 32 Processors,
 15GB Memory
- Linux (2.4.18) Beowulf Cluster, 48 Nodes,
 ~1GB Memory per Node

Grids: ICEM Block-Structured

	WB	WBNP
Coarse	3.3	4.6
Medium	5.5	8.5
Fine	10	13.7

Cells in Million

Wing-Body Results (M = 0.75)

Wing-Body Results (M = 0.75)

Wing-Body Results

(M = 0.75, CL = 0.5)

	Coarse	Medium	Experiment
Incidence	0.23	0.32	0.52
CD	0.0308	0.0297	0.0295
CDpr	0.0169	0.0169	
CDf	0.0139	0.0128	
СМ	-0.136	-0.131	-0.121

STANFORD UNIVERSITY

Wing-Body Results

(M = 0.75, CL = 0.5)

We Have a Separation Zone Near the Wing Root

Size: ~ 73mm upstream of TE
(at Wing Root)
~ 22 mm maximum
extension of separating
Streamline

Eye ~ 7mm/15mm from TE and WF Intersection, respectively

STANFORD UNIVERSITY

Wing-Body-Nacelle-Pylon Results (M = 0.75)

Grid Dependency of Results

Fuselage Skin Friction Drag

Wing-Body ~72 counts Wing-Body-Nacelle-Pylon ~77 counts

☐ ~ 5 counts

STANFORD UNIVERSITY

Wing-Body Pressure Distribution

(M = 0.75, CL = 0.5)

Wing-Body-Nacelle-Pylon Pressure Distribution

(M = 0.75, Incidence = 0.19)

STANFORD UNIVERSITY

Pylon and Nacelle Pressure <u>Distribution</u>

(M = 0.75, Incidence = 0.19)

Summary

- Correct Lift Slope and Polar Shape
- Good Agreement in Total Drag for Wing-Body configuration
- Deviation in Total Drag for Wing-Body-Nacelle-Pylon configuration likely due to Grid Dependency

