

Force and Moment Estimates for the DLR F6 Configuration Using NSU3D

Steve Klausmeyer Cessna Aircraft Company

Goals

- Further refine and quantify in-house drag prediction
 - Evaluate incremental drag capability
- Evaluate ICEM for unstructured viscous mesh generation
 - Flow solver compatibility
 - Force and moment accuracy

NSU3D

- Unstructured grid, mixed element, node based
- Thin-layer RANS with Spalart-Allmaras turbulence model
- Multigrid with automated coarse level generation via agglomeration
- Implicit lines through boundary layer speed convergence
- Distributed memory parallel implementation
- Cache-based optimizations

ICEM

- Features
 - CATIA interface
 - Mesh sizes specified directly on patches
 - Multi-Use --> structured, unstructured, mixed
- Issues
 - Memory requirements for large meshes
 - Prism grid quality and robustness
 - Octree mesh growth

Mixed Element Unstructured Meshes

- Self-generated using the Tetra & Prism modules within ICEM
- 25 prism layers
- Isotropic surface elements
- WB grid sizes: 1.2m 2.6m 6.2m
- WBNP grid sizes: 1.6m 4.0m 8.0m
- Generation times: ~ 8 hours for medium WB mesh

Surface Meshes - Medium

Computer Resources

- 48 node Linux cluster.
 - 1.7 GHz Athlon processors
 - 48 Gbyte total memory
 - 3 16 node banks
- 32 node Linux cluster
 - Alpha VP2000 motherboards
 - 32 Gbyte total memory
- 8 node SGI ONYX
 - 600 MHz R14000 processors
 - 6 Gbyte memory with 6 Gb swap

Solution Statistics

- Each solution utilized 16 nodes
- For the medium WB mesh
 - 275 Mbytes per node (4.4 Gbytes total)
 - 3.6 hrs for 500 multigrid cycles
 - Drag polar or drag rise within a 24 hour window.

Typical Solution Convergence

Flow Features

WB Surface Pressure M=0.75 CL=0.5 Re=3M Fully Turbulent

Х

2.6M nodes

WBNP Surface Pressure M=0.75 CL=0.5 Re=3M Fully Turbulent

Flow Features

Skin Friction

Pressure

Flow Features

Case 1 – Grid Convergence

Effect of Grid Size on Nacelle Installation Drag Nacelle Installation Drag

Case 2 – Alpha Sweep

Drag Polar

Case 4 – Drag Rise

WBNP Drag Rise

Conclusions

This was a lot of work.

More Conclusions

- Current methodology approaching adequacy for prediction of drag changes due to minor airframe modifications.
- There is enough variation in parasite, induced, and wave drag characteristics to warrant further investigation before using to develop a full drag basis.
- Flow solver performance
 - Robust tolerant of meshes with isolated regions of poor grid quality
 - No startup trauma difficulties
 - Fast convergence --> allows overnight drag polar runs
- Grid generation
 - Developed procedures for generating acceptable prism meshes.
 - Prism mesh robustness and quality is an issue.

Further Work

- Perform similar exercise on a business jet configuration with fuselage mounted nacelles.
- Tripped boundary layer study with new version of code.
- Study induced drag prediction at lower Mach number (0.5)
- Investigate alpha shift
 - Grid resolution
 - Comparisons with in-house configurations
- Investigate pitching moment discrepancy