Drag Prediction Using NSU3D (Unstructured Multigrid NS Solver)

Dimitri J. Mavriplis National Institute of Aerospace Hampton, VA 23666 (USA)

NSU3D Description

- Unstructured Reynolds Averaged Navier-Stokes solver
 - Vertex-based discertization
 - Mixed elements (prisms in boundary layer)
 - Edge data structure
 - Matrix artificial dissipation
 - Option for upwind scheme with gradient reconstruction
 - No cross derivative viscous terms
 - Thin layer in all 3 directions

Solver Description (cont'd)

- Spalart-Allmaras turbulence model
 - (original published form)
 - Optional k-omega model
- Transition specified by zeroing out production term in turbulence model
 - More robust than S-A trip term
 - Based on surface patches
 - Laminar patches
 - Laminar normal distance

Solution Strategy

- Jacobi/Line Preconditioning
 - Line solves in boundary layer regions
 - Releives aspect ratio stiffness
- Agglomeration multigrid
 - Fast grid independent convergence rates
- Parallel implementation
 - MPI/OpenMP hybrid model
 - DPW runs: MPI on 16 cpu cluster

Performance

- Convergence in 500 multigrid cycles
 - Grid independent
 - Poor convergence for negative alpha nacelle cases
- 16 Pentium IV 1.7GHz: Intermediate grids
 - 5 hours for 3M pt grid
 - 7.5 hours for 5M pt grid

Grid Generation

- Runs based on NASA Langley supplied VGRIDns unstructured grids
- Tetrahedra in Boundary Layer merged into prismatic elements
- Sequence of 3 grids for each configuration
- Transition based on surface patches

Grid Specifications

Configuration	Coarse	Medium	Fine
Wing-Body			
Points	1,121,301	3,010307	9,133,352
Cells	6,558,758	17,635,283	53,653,279
WB+Nacelle			
Points	1,827,470	4,751,207	10,278,588
Cells	10,715,204	27,875,222	60,412,948

Intermediate Grid (WB: 3M pts)

• Transition specified by laminar patches

Intermediate Grid (WB: 3M pts)

• Transition specified by laminar patches

Intermediate Grid (WBN: 5M pts)

• Transition specified by laminar patches

• Matching C_L

• Matching Incidence

• Matching C_L

• Matching Incidence

Lift vs. Incidence (Wing-Body)

• Large Lift overprediction (incidence shift)

Surface Pressure at y/b=0.411(WB)

- Solution converges with grid refinement
- Poor match with experiment for specified C_L
- Better match for specified incidence

Lift vs. Incidence (WB-Nacelle)

• Large Lift overprediction (incidence shift)

Surface Pressure at y/b=0.411(WBNacelle)

- Solution converges with grid refinement
- Poor match with experiment for specified C_L
- Better match for specified incidence

Drag Polar (Wing-Body)

- Coarse grid inadequate
- Correct shape, slight underprediction

Drag Polar (Wing-Body-Nacelle)

- Coarse grid inadequate
- Correct shape, slight underprediction
- Convergence issues at negative incidences

Moment (Wing-Body)

- Poor moment prediction
 - Related to incidence shift

Moment (Wing-BodyNacelle)

- Poor moment prediction
 - Related to incidence shift

Incremental Drag

- Within 2 to 4 counts at $C_L=0.5$
- Transition effects cancel out
- More discrepancies at lower lift

Incremental Moment

- Good prediction in spite of poor absolute values
 - Cross over well predicted
 - Discrepancies at lower lift

Drag Rise Curves

- Medium grids, transition
- General trend, Drag underpredicted
- C₁ vs incidence issues

Flow Details

• Separation bubble on WB-Nacelle (fine grid)

Flow Details

- Strong shock inboard pylon (-2 deg)
- Ahead of specified transition region on lower wing

Conclusions

- CL Incidence Issues
- Better success at prediction of increments
- Grid Generation approach may be more important than actual resolution
- Aero is still a tough problem
 - Worthy of funding