21-22. Jun. 2003 AIAA Drag Prediction Workshop II, Orlando, FL

AIAA Drag Prediction Workshop II KHI Results with Hybrid Unstructured Grid

Akio Ochi and Eiji Shima

Kawasaki Heavy Industries, Ltd. (KHI)

Outline

- Grid system
- Numerical method
- Computed cases
- Results
 - Wing-Body (WB) configuration
 - Wing-Body-Nacelle-Pylon (WBNP) configuration
- Summary

Grid generation process

- Hybrid unstructured volume grid
- CFD volume mesh is generated by KHI original code
 <u>PUFGG (Pile-Up Forming Grid Generator)</u>
 <u>4th layer-</u> 3rd layer-
- Piles up layers from surface mesh
- Applicable both viscous and inviscid flow
- For surface mesh, triangle, quadrilateral, or mixed cells can be used

2nd layer

1st lave

surface

1 hour to generate viscous mesh for WBNP

Surface Grid

Medium density grid

- •Surface mesh consists of 98% quadrilateral cells and 2% triangle cells
- •Volume mesh consists of 78% hex, 16% prism, 3% pyramid, and 3% tetra cells

Cross section at nacelle

- Medium grid
- •Black lines are cut volume grid lines at center of nacelle.
- •Blue lines show surface mesh.
- •Grid cells near body surface are similar to structured grid cells, because grid cells this region consist of hex cells.
- •Far field grid keeps ordered structure, because grid cells mainly consist of prism cells.

Numerical Method UG3

- **Governing equations :** Thin layer RANS equations \bigcirc
- Grid system: 0

Hybrid unstructured grid

MUSCL+SHUS

- Numerical scheme: Cell centered finite volume method \bigcirc
 - Spatial discritization :
 - Time integration :
 - Turbulence modeling :

MFGS Implicit scheme Spalart-Allmaras (SA) model **Baldwin-Barth (BB) model**

Computed Cases

Grid size

	Grid size	Surface cells	Volume points	Volume cells
	Coarse	22k	1.6M	1.8M
	Medium	57k	3.6M	4.1 M
Wing/Body	Fine	73k	4.7M	7.5M
	Coarse	49k	2.8 M	3.3M
	Medium	105k	5.9M	6.7M
Wing/Body/	Fine	160k	M6.8	9.5M
Nacelle/Pylon				

Comparison of CL,CD,CM between SA and BB turbulence model for Wing-Body configuration

- Wind Tunnel Test
- Medium SA fully turb.
- Medium SA tripped
 - Medium BB fully turb.

Medium BB tripped

- Spalart-Allmaras (SA) turbulence model shows closer value to WTT, while Baldwin-Barth (BB) model shows large alpha shift.
- \bullet CL α slope computed by BB model is in good agreement with WTT result
- CL α slope computed by SA model is slightly smaller value than WTT result.
- Transition effect:
 - Increase CL by approx. +0.02
 - Decrease CD by approx. 4 drag counts.
 - $\mbox{CL}\alpha$ slope is nearly same

Surface mesh effect on separation vortex for Wing-Body configuration

Coarse

Medium

Kawasaki

Comparison of polar, CDf, and CDp between SA and BB turbulence model for Wing-Body configuration

Wind Tunnel Test

Medium SA fully turb.

Kawasak

- ---- Medium SA tripped
 - Medium BB fully turb.
- A Medium BB tripped
- Difference of polar curve between WTT and CFD is less than 10 counts
- Friction drag are nearly constant values regardless of lift values.
- SA model shows less friction drag than BB model about 7 counts.
- Pressure drag shows almost same value.
- Transition effect is just shift

•Larger lift, smaller drag

Difference of span-wise grid density

--- 100x67 chord(one side) x span --- 100x93 --- 200x121

- •Shock location moves forward with increase of span-wise direction grid points.
- •Shock location shift looks like converged at 121 points.
- •67 points grid results seems to be good results, however if transition is not applied in this calculation.

Calculation condition: Wing-Body, M=0.75, AOA=0.49, SA model, fully turbulent

Difference of Chord-wise grid density

-- 100x93 chord(one side) x span

--- 200x88

- •Difference between two grid is small
- •Shock is slightly steep in fine grid results.

Calculation condition: Wing-Body, M=0.75, AOA=0.49, SA model, fully turbulent

Transition effect

---- 100x121

- --- 100x121 (with transition)
- •Transition effect:
 - Shock location moves backward
 - Shock intensity becomes strong
 - •Wave drag estimation should be affected.

Calculation condition: Wing-Body, M=0.75, AOA=0.49, SA model

Difference of turbulence model

--- 100x121 (SA fully turbulent)--- 100x121 (BB fully turbulent)

•SA shows forward shock location.

•BB shows larger lift.

Calculation condition: Wing-Body, M=0.75, AOA=0.49, fully turbulent

Comparison of CL,CD,CM between SA and BB turbulence model for Wing-Body-Nacelle-Pylon

- Wind Tunnel Test
- Medium SA fully turb.
- Medium SA tripped
- Medium BB fully turb.

A Medium BB tripped

- Different with WB case, $CL-\alpha$ slope by SA is considerably small compared to WTT result.
- \bullet CL α slope by BB is still in good agreement with WTT result
- •CDmin computed by CFD is larger than WTT
- •Drag and moment coefficient by SA is closer to WTT than BB result

Comparison of separation bubble size

Wind Tunnel Test

Calculation condition: Wing-Body-Nacelle-Pylon, M=0.75, α =1.0 21-22. Jun. 2003 AIAA Drag Prediction Workshop II, Orlando, FL

Comparison of polar, CDf, and CDp between SA and BB turbulence model for Wing-Body configuration

Kawasaki

Calculation condition: Wing-Body-Nacelle-Pylon, M=0.75 21-22. Jun. 2003 AIAA Drag Prediction Workshop II, Orlando, FL

Transition location μ_{T} / μ = 10 Iso-surface visualization WING/BODY AOA CL **CDtotal** CDp CDf C 0.0296 FULLY TURBULE 01292 0.500 0.0164 0.0132 -0 Upper TRIPPED 0.263 0.500 0.0292 0.0166 0.0126 -0 surface -0.029 -0.0006 0.000 -0.0004 0.0002 -0.0 WING/BODY/NACELLE/PYLON AOA **CDtotal** CDp CDf CN CL FULLY TURBULE 0.975 0.500 0.0352 0.0196 0.0159 -0. 0.0148 TRIPPED 0.809 0.500 0.0343 0.0195 -0. Lower -0.166 0.000 -0.0008 -0.0001-0.0011-0.0 surface

21-22. Jun. 2003 AIAA Drag Prediction Workshop II, Orlando, FL

Transition

Summary

Wing-Body.

- Spalart-Allmaras (SA) turbulence model is closer to WTT, while Baldwin-Barth (BB) model shows large alpha shift.
- $CL\alpha$ slope overall agreement is good.
- Drag polar is in good agreement.
- Coarse grid could not capture separation bubble at wing-body junction. However medium and fine grid over estimated separation bubble.

Wing-Body-Nacelle-Pylon.

- $CL\alpha$ slope by SA model is considerably small.
- (Coarse grid SA showed better $CL\alpha$ slope)
- Cdmin was not well predicted differences are 20counts(SA) and 30counts(BB). Polar curve is slightly opened.
- SA model showed larger separation bubble at pylon inboard than BB model.

Summary cont'd

Directional grid density.

- If span-wise grid is increased, shock location moves forward. Lift is decreased.
- If chord-wise grid is increased, shock location is almost same. Lift is a little increased.
- (If normal direction grid to the surface is increased, lift is a little increased. However cp distribution is hardly changed.).

Transition effect.

- Just shift.
 - $\Delta CDf = -4 counts(WB), -9 counts(WBNP)$

END

Thank you for your attention

- Wall clock time 1day for medium WBNP using 8PCUs PC cluster(P4 2.8GHz).
- Convergence criteria Max(ΔCL, ΔCD, ΔCM) < 5x10⁻⁷/step

Case#1 Grid convergence

Wing-Body Configuration

		Grid cells	AoA C	C.	CD	СМ	CDp	CDf
WTT			0.52	0.5000	0.0295	-0.1211		
PUFGG	Coarse	1.8M	-0.15	0.5003	0.0289	-0.1619	0.0156	0.0133
PUFGG	medium	4.1M	0.29	0.4999	0.0296	-0.1449	0.0164	0.0132
PUFGG	fine	7.5M	0.27	0.5247	0.0292	-0.1355	0.0162	0.0130
ICEM	coarse	3.4M	0.33	0.4995	0.0289	-0.1392	0.0158	0.0131
ICEM	medium	5.7M	0.27	0.5004	0.0284	-0.1427	0.0154	0.0130
ICEM	fine	10.0M	0.26	0.5001	0.0282	-0.1436	0.0151	0.0130

Case#1 Grid convergence

Wing-Body-Nacelle-Pylon Configuration

	Grid	cells	AoA	CL		CD	СМ	CDp	CDf	
WTT			1	0.	5000	0.0338	8 -0.1199			
PUFGG Coars	se 3.	.3M	0.61	0.	4994	0.0358	3 -0.1505	0.0201	0.0	
PUFGG mediu	m 6.	.7M								
PUFGG fine	9.	.5M								
ICEM coars	se 4.	.8M	0.89	0.	5005	0.0341	-0.1374	0.0184	0.0	
ICEM mediu	m 8.	.3M	0.86	0 .	5003	0.0336	5 -0.1400	0.0180	0.0	
ICEM fine	13	8.5M								

Summary cont'd

- Grid density affects separation bubble size at wing-body junction. Consequently, lift is considerably changed.
 - For worst case \triangle CL=0.06, as AOA \triangle a=0.5
- Spurious drag is reduced with increasing grid density
 - Corase(2M) grid; CDspurious=10counts(WB),17counts(WBNP)
 - Fine(8M) grid; CDspurious= 5counts(WB), 8counts(WBNP)
- Transition effect is simple.
 - $\Delta CL = +0.01$ to +0.02
 - ∆CLa is about +1% (for SA,BB, KHI grid, ICEM grid)
 - $\Delta CD = -4 counts(WB), -9 counts(WBNP)$
 - $\Delta CDf = -4 counts(WB), -10 counts(WBNP)$
 - Shock location moves backward. Shock becomes strong.

Comparison of CL,CD,CM between medium and fine grid for Wing-Body-Nacelle-Pylon using SA model

Kawasaki

Comparison of CL,CD,CM between medium and fine grid for Wing-Body config. using SA model

Comparison of CL,CD,CM between medium and fine grid for Wing-Body config. using BB model

Comparison of polar curve between SA and BB turbulence model for Wing-Body configuration

Calculation condition: Wing-Body, M=0.75

Comparison of polar curve between medium and fine grid for Wing-Body config. using SA model

Calculation condition: Wing-Body, M=0.75 21-22. Jun. 2003 AIAA Drag Prediction Workshop II, Orlando, FL

Comparison of polar curve between medium and fine grid for Wing-Body config. using BB model

Calculation condition: Wing-Body, M=0.75 21-22. Jun. 2003 AIAA Drag Prediction Workshop II, Orlando, FL Normal to body surface direction grid density effect on Cp distributions for Wing-Body configuration

Kawasaki

Calculation condition: Wing-Body, M=0.75, AOA=0.49, SA model, fully turbulent

Comparison of CL,CD,CM between medium and fine grid for Wing-Body-Nacelle-Pylon using BB model

Kawasaki

Calculation condition: Wing-Body-Nacelle-Pylon, M=0.75

WBNP

Calculation condition: Wing-Body-Nacelle-Pylon, M=0.75

Calculation condition: Wing-Body-Nacelle-Pylon, M=0.75

WB CLa (-3to1degs)

Assessed items

- CL,CD,CM
- CL α
- Drag polar
- CDpressrue, CDfriction
- Cp distribution
- Span load distribution
- Oil flow visualization
- Transition point

Calculation condition: Wing-Body-Nacelle-Pylon, M=0.75 21-22. Jun. 2003 AIAA Drag Prediction Workshop II, Orlando, FL

Calculation condition: Wing-Body-Nacelle-Pylon, M=0.75 21-22. Jun. 2003 AIAA Drag Prediction Workshop II, Orlando, FL

