

Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F6 Configuration

Neal T. Frink William E. Milholen, II NASA Langley Research Center Hampton, Virginia

2nd AIAA CFD Drag Prediction Workshop Sponsored by the Applied Aerodynamics Technical Committee 21st AIAA Applied Aerodynamics Conference Orlando, Florida 21,22 June, 2003

USM3Dns - Salient Features

- Tetrahedral cell-centered finite volume
 - Efficient analytic cell reconstruction scheme
- Euler and Navier-Stokes
 - Spalart-Allmaras turbulence model
 - DPW2 solutions computed with wall function
- Time Integration Implicit GS and Explicit RK
- Roe's upwind FDS with flux limiting
- Standard and special boundary conditions
- Platforms
 - Clustered Linux PC, SGI, Mac OS/X
 - Cray vector processors

Special Wake BC

Tetrahedral Grids for DLR-F6 DPW2 Configuration For Cell-Centered Codes with Wall Function

	WB	WBNP
Coarse		
Nominal y+ _{node} = 52	1,409,689 cells	2,152,607 cells
Avg ∆n _{n1} =0.079	Avg. y+ _{cell} = 13.1	Avg. y+ _{cell} = 12.9
Avg. Δn _{c1} =0.020		
Medium		
Nominal y+ _{node} = 36	3,901,658 cells	5,912,596 cells
Avg ∆n _{n1} =0.053	Avg. y ⁺ _{cell} = 8.9	Avg. y ⁺ _{cell} = 8.7
Avg. ∆n _{c1} =0.013		
Fine		
Nominal y+ _{node} = 24	11,347,301 cells	17,193,275 cells
Avg ∆n _{n1} =0.036	Avg. $y^+_{cell} = 5.9$	Did not run
Avg. Δn _{c1} =0.009		

Chordwise Spacing at WB Crank Station DLRF6: Tetrahedral <u>Cell-Centered</u> Grids for USM3Dns

Typical USM3Dns Convergence for Case 1

DLR-F6 WB (Fine Grid: 11,347,301 cells)

- NAS Origin 2000 64 processors
- 180 words/cell (8 bytes/word)
- 14.9 wallclock hours for α =0 deg
- 12.4 wallclock hours for $C_L=0.500$
- Typical times for other grids
 - Medium: 5-6 hours on 48 procs
 - Coarse: 1-2 hours on 32 procs

3600 Iterations					
COEFFICIEN	ITS AVERAGED	OVER LAST	100	CYCLES	
CL_usm3d	= 0.499367 ((+0.000011,	-0.000019)		
CD_usm3d	= 0.027679 ((+0.000003,	-0.000002)		
CDV_usm3d	= 0.012213 (+0.000000,	-0.000000)		
CM_usm3d	=-0.130792 ((+0.000010,	-0.000017)		
COEFFICIEN	ITS AVERAGED	OVER LAST	200	CYCLES	
CL_usm3d	= 0.499373 ((+0.000034,	-0.000025)		
CD_usm3d	= 0.027679 (+0.000003,	-0.000004)		
CDV_usm3d	= 0.012213 (+0.000000,	-0.000000)		
CM_usm3d	=-0.130801 ((+0.000019,	-0.000018)		

Force and Moment Data on DLR-F6 WB – Cases 2

 M_{∞} =0.75, Re_{mac}=3.0×10⁶

Force and Moment Data on DLR-F6 WBNP – Cases 2

 M_{∞} =0.75, Re_{mac}=3.0×10⁶

neal.t.frink@nasa.gov, w.e.milholen@larc.nasa.gov

Comparison of Wing Flow Patterns DLR-F6 WBNP: M_o=0.75, Re_{mac}=3.0X10⁶, C_L=0.500

DLR Surface Oil Flow

USM3Dns Fine Grid

Wing Pressure Distributions DPW2: DLR-F6 WB: M_{∞} =0.75, Re_{mac}=3.0X10⁶, C_L=0.500

Wing Pressure Distributions DPW2: DLR-F6 WBNP: M_{∞} =0.75, Re_{mac}=3.0X10⁶, C_L=0.500

Comparison of WB Juncture Separation DLR-F6 WB Fine Grid: M_{∞} =0.75, Re_{mac}=3.0X10⁶, C_L=0.500

		BUB	EYE (W)	EYE (B)
	FS	211.41	234.79	239.40
	BL	-90.50	-74.14	-68.78
	WL	1.36	-9.24	-2.67
Gray denotes u<0		Dimens	ions in m	m

Nacelle Pressure Distributions DPW2: DLR-F6 WBNP: M_∞=0.75, Re_{mac}=3.0X10⁶, C_L=0.500

Comparison of Inb'd Pylon Separation DPW2: DLR-F6 WBNP: M_{∞} =0.75, Re_{mac}=3.0X10⁶, C_L=0.500

Supplemental slides

DLR-F6 Unstructured WB grids for Cell-Based Solvers

Grid Generation by VGRIDns

Δn	$_{i} = \Delta n_{1}$	(1+a((1+b) ^j	-1)j-1
----	-----------------------	-------	--------------------	--------

Grid statistics:	Coarse	Medium	Fine
•Tetrahedral cells:	1,409,689	3,901,658	11,347,301
•Total grid nodes	246,020	675,946	1,954,524
 Total Bndry triangles 	33,408	66,022	135,482
• Triangles on no-slip surfaces	24,638	49,919	104,180
•Tet cells in viscous layer	524,213	1,051,794	2,017,809
•Nodes in the viscous layers:	103,973	208,210	404,276
•T.E. patches	2	2	2

Grid spacings:	Coarse	Medium	Fine
% chordwise spacing at LE	0.90	0.60	0.35
% chordwise spacing at TE	0.494	0.29	0.185
Avg <u>cell</u> y ⁺ Avg <u>node</u> y ⁺ (sized for wall function)	13 52	9 36	6 24
Nominal BL cells	16	18	20
Init 'viscous' wall spacing (Δn_1)	0.0855	0.057	0.038
Geometric stretching rates <i>a</i> and <i>b</i>	0.456, 0.07	0.456, 0 07	0.456, 0.07
Outer boundary box	106 c _{ref}	106 c _{ref}	106 c _{ref}

Grids generated by Jonathon Nehrbass, intern in the Configuration Aerodynamics Branch, NASA LaRC under direction of Neal Frink

DLR-F6 Unstructured WB grids for Node-Based Solvers

Grid Generation by VGRIDns

Δn	$p_{i} = \Delta n_{1}(1 + a(1 + b)^{j-1})$	j-1
----	--	-----

Grid statistics:	Coarse	Medium	Fine
Total grid nodes	1,121,301	3,010,307	9,133,352
Tetrahedral cells:	6,558,758	17,635,283	53,653,279
Nodes on no-slip boundaries	25,104	55,069	118,903
Nodes in viscous layers:	674,338	1,462,475	3,975,437
Tet cells in viscous layer	3,826,019	8,313,126	22,866,866
T.E. patches	2	4	6

Grid spacings:	Coarse	Medium	Fine
Nominal BL nodes	26	26	33
Init 'viscous' wall spacing (Δn_1)	0.00144	0.001	0.000695
Geometric stretching rates <i>a</i> and <i>b</i>	0.2, 0.02	0.2, 0.02	0.13, 0.02
Outer boundary box	106 c _{ref}	106 c _{ref}	106 c _{ref}

Grids generated by Beth Lee-Rausch, Computational Modeling & Simulation Branch, NASA LaRC

DLR-F6 WB Tetrahedral Viscous Grids for Cell-Centered Solvers

neal.t.frink@nasa.gov

DLR-F6 WBNP Tetrahedral Viscous Grids for Cell-Centered Solvers

Case2: WB angle-of-attack sweep

Case2: WBPN angle-of-attack sweep

