FUN3D Analysis of DPW-II Transport Configuration

E. M. Lee-Rausch, E. J. Nielsen, M. A. Park, R. D. Rausch NASA Langley Research Center

2nd AIAA CFD Drag Prediction Workshop Sponsored by the Applied Aerodynamics TC Orlando, FL June 21-22, 2003

FUN3D Unstructured Grid Code

- Parallel 3D compressible finite-volume RANS for tetrahedral meshes
- Implicit time-stepping using point Gauss-Seidel and line-relaxation for linear system
- Upwind Roe scheme for inviscid fluxes
- Galerkin-type approximation for viscous fluxes
- Spalart-Allmaras turbulence model (loosely coupled)
- Full Navier-Stokes equations

FUN3D Unstructured Grid Code

- Parallel version
 - Domain decomposition using the MeTiS mesh partitioning software (weighted for the line solver)
 - Parallel code execution scheme utilizes MPI

Computational Grids

• Workshop VGRIDns node-based grids (based on the work of Frink and Pirzadeh for cell-based grids)

	Wing/Body	Wing/Body/Nac./Pylon
	Total Nodes	Total Nodes
Coarse	1,121,301	1,827,470
Medium	3,010,307	4,751,207
Fine	9,133,352	10,278,588

Summary FUN3D Results

- Case 1: Mach 0.75, C_L=0.5 Re_c 3 million (fully turbulent)
 - Wing/body coarse, medium and fine grids
 - Wing/body/nac./pylon coarse, medium and fine grids
- Case 2: Mach 0.75, C_L=0.5 Re_c 3 million (fully turbulent)
 - Wing/body medium grid
 - Wing/body/nacelle/pylon medium grid
- Case 3: Mach 0.75, $C_L=0.5 \text{ Re}_c 3$ million specified transition
 - Wing/body medium grid
 - Wing/body/nacelle/pylon medium grid

Wing/Body Grid Refinement Mach 0.75, C_L=0.5

Wing/Body Grid Refinement

Wing/Body/Nac./Pylon Grid Refinement Mach 0.75, C_L=0.5

Wing/Body/Nac./Pylon Grid Refinement

Wing/Body/Nac./Pylon Grid Refinement

Wing/Body Polar

-0.1

Wing/Body/Nac./Pylon Polar

Mach 0.75, Re_c 3 x 10⁶ Spalart-Allmaras Fully Turbulent

Wing/Body/Nac./Pylon

Mach 0.75, -1.0 deg

Summary

- Case 1
 - Wing/body drag decreasing monotonically with grid refinement
 - Wing/body/nac./pylon drag not changing monotonically with grid refinement
- Case 2
 - Wing/body drag correlates well with exp.
 - Wing/body/nac./pylon drag does not correlate well with exp. at lower angle of attack (solution sensitivity with initialization)

Summary

- Case 3
 - Wing/body drag decreasing 17 counts with specified transition
 - Wing/body/nac./pylon drag decreased 12 counts with specified transition