DPW-8 & AePW-4

Buffet Working Group

May 6, 2024

aiaabuffet@gmail.com

Buffet Working Group Leadership Team

- Hadar Ben-Gida, Technion Israel Institute of Technology
- Brent Pomeroy, NASA Langley Image
- Daniella Raveh, Technion Israel Institute of Technology
- Bret Stanford, NASA Langley Maintenance
- Andrea Sansica, JAXA 💌

Static Aeroelastic Deformation

- 1. Collaborative effort with both communities
- 2. Compute fluid/structure interactions in linear regime

Ben Rider, Stefan Keye, Garrett Mchugh

Unsteady Aerodynamics and Buffet

- 1. Collaborative effort with both communities
- 2. Compute unsteady flowfield (fixed geometry)
- 3. Compute fluid/structure interactions in linear regime and past pitchup

Hadar Ben-Gida, Brent Pomeroy, Daniella Raveh, Andrea Sansica, and Bret Stanford

Vision

- Leverage knowledge from both fields to advance state of the art
 - Increase understanding within each field, individually
 - Synthesize methods to increase understanding of buffet predictions
- Determine practices that accurately resolve unsteady, fixed-geometry at buffet conditions
- Exercise capabilities of solvers to simulate unsteady FSI buffet
- To provide an impartial forum for evaluating the effectiveness of existing tools and methods
- Provide guidance for simulations while relying upon users to implement his/her code's best practices
- Establish workshop model for future multidisciplinary communities

Participant Summary

- 127 workshop respondents to date
- 77 signed up for Buffet Working Group meeting series
 - Please fill out SurveyMonkey link by the end of Thursday if you have not done so <u>https://aiaa-dpw.larc.nasa.gov</u>
 - Represent five continents
 - Most individuals are interested in multiple working groups
 - 47 also interested in Static Deformation Working Group

DPW-8 and AePW-4 Configurations

NASA/Boeing Common Research Model

- Well studied and tested
- Provides good comparison to other workshops
- Rich legacy of NASA and Onera experimental data recently supplemented JAXA data
- Finite element model available for NASA and JAXA models

Components

- Different working groups require various geometries
- Will include: wing/body and wing/body/tail

Schemes

- Wide range of potential solvers
- Many users may use more than one scheme
 - 47 RANS
 - 45 URANS
 - 35 hybrid RANS/LES
 - 19 LES/WMLES
 - And more

Grids

• Geometry

- High-quality CAD is being created or already exists, much from DPW-7
- Available for download from the DPW website and JAXA website (link coming)

Common grids are being generated

- Strongly encourage use of committee-supplied grids
- Cadence/Pointwise, Helden Aerospace, and NASA Ames (and you???)
- User's best practices for solvers may require alternate grids
- Submission to the workshop strongly desires any custom grids to be provided for posting on the website

Proposed topologies

- Mixed-element unstructured
- All-tet unstructured
- Structured overset multiblock
- Structured (for all configurations???)
- Hex dominant

JAXA Experimental Data

Scaled-down NASA CRM tested in JAXA 2m x 2m transonic wind tunnel

- Reynolds numbers of 1.5 and 2.3 million
- Rich data set of steady and unsteady data

Model details

- 80% scale NASA CRM (2.16% full-scale vehicle)
- Wing/body/tail
- Wind-off wing shape is the as-defined (in 2008) 1-G shape (same as NASA CRM)

Data Set	Wing	Re	Alpha	Static, loaded deformation	F&M	Static Taps	Kulites	Oil Flow	Wake PIV	TSP	PSP	uPSP	Strain Gauge	FEM	Release Status
A.1	Steady	2.3	-2 to 6 every ~1.2 deg	Х	Х	Х		Х	Х						Public
A.2	Steady	2.3	-2 to 7	Х	Х	Х				Х	Х				Requested
B.1	Unsteady Wing #1	1.5	4.84, 5.89	Х	Х		х								Public
B.2	Unsteady Wing #2	2.3	-2 to 7		Х		Х					Х	Х	Х	Requested

New NASA Experimental Data

Planned test in NASA Ames 11-ft Transonic Wind Tunnel

- Currently scheduled for three weeks in Fall, 2025
- Focused upon uPSP data collection
- Collaborative effort between Boeing and NASA
- Higher-Reynolds numbers will be tested
- Wing/body and maybe wing/body/tail

New data set and modified model

- Provides opportunity for blind comparisons
- CFD has a unique opportunity to inform the test matrix
- Additional Kulite instrumentation will require a new FEM

- Required
- ONERA OAT15A quasi-2D airfoil (10% chord)
- Reynolds number 3.0 million
- Use best practices for each solver, strongly prefer at least some variation of SA plus any other desired turbulence models
- Test Case 1a
 - Consistent validation with the rest of the workshop including grid convergence
 - Steady RANS with some flavor of SA plus any other turbulence models
 - Pre-buffet
- Test Case 1b
 - Consistent methods and setup as will be used for other test cases
 - Unsteady CFD
 - Freedom for user to exercise best methods for his/her code(s)
 - Pre-buffet and post-buffet

Test Case 2: Unsteady CFD, Static Wing

- Optional
- Unsteady CFD with static geometry/grid
- Reynolds number 1.5 million
- CRM wing/body/tail
- Committee-supplied
 - JAXA geometry at 4.84 and 5.89 degrees
 - NASA geometry at pre-buffet condition (perhaps $C_L=0.50$)
 - Grids for associated geometry
 - Trip location (optional to use)

Comparison metrics

- Time-averaged F&M and $C_{\mbox{\tiny P}}$ data
- Unsteady pressure signals at select locations
- Frequency content at select locations

Test Case 3: Unsteady FSI

- Optional
- Coupled unsteady CFD and dynamic geometry/grid
- Reynolds number 2.3 million
- Committee-supplied
 - Undeformed jig geometry and grid
 - FEM model
 - Trip location (optional to use)

Comparison Metrics

- Time-averaged F&M and $C_{\mbox{\tiny P}}$ data
- Unsteady pressure signals at select locations
- Frequency content at select locations
- Surface C_P (UPSP)
- Strain gauge
- Structural response

- Optional
- Wing/body
- Unsteady CFD with static geometry/grid
- Reynolds number 5 million
- Blind simulations prior to the test
- Committee-supplied
 - Pre-test grids and geometry (consistent with DPW-7)
 - Experimentally-measured test geometry (hopefully)
 - Updated FEM model including Kulite installation considerations

Comparison Metrics

- Time-averaged F&M and $C_{\mbox{\tiny P}}$ data
- Unsteady pressure signals at select locations

Nominal Schedule

• May, 2024

- ONERA OAT15A geometry release
- June, 2024
 - ONERA OAT15A grids released
- July, 2024
 - First look of Test Case 2/3 grids
- August, 2024
 - AVIATION in-person meeting
- Winter, 2024
 - Mini Workshop 1
- January, 2025
 - SciTech in-person meeting

- Summer/Fall, 2025
 - Mini Workshop 2
 - NASA Ames 11-ft test
- February, 2026
 - Delivery of final data set (perhaps alternate submissions prior to this date)

• June, 2026

- Workshop in San Diego, CA

Working Group Meeting Cadence

Currently set up for 9:00 Eastern time on first and third Monday of each month

- Difficult to achieve suitable meeting time for global participants
- Will consider alternate meeting times throughout course of workshop

Two recurring meeting invites

- One is for first Monday of the month
- One is for the third Monday of the month
- This was done so that one of the meetings can be moved to a different time in the future
- No meeting May 20

SHAPING THE FUTURE OF AEROSPACE

aiaabuffet@gmail.com