Assessment of an Unstructured Grid Navier-Stokes Code for Predicting Aircraft Performance

AIAA CFD Drag Prediction Workshop
June 9-10, 2001
Anaheim, CA

Rick Hooker, Aerodynamics
Lockheed Martin Aeronautics Company - Marietta
Introduction

• Purpose
 – Assess LMAS tools drag prediction capabilities.
 – Assess influence of select grid parameters on drag prediction.

• Outline
 – CFD tools description.
 – Grid description.
 – Convergence criteria.
 – Code performance / computer description.
 – CFD results.

• Summary / Conclusions
Aerodynamics Tools Description

• Grid Generator - GRIDTOOL / VGRID3D
 - *NASA LaRC developed*
 - *Tetrahedral based unstructured grids*
 • Advancing layers to resolve boundary layer
 • Minimizes grid generation time

• Flow Solver - USM3Dns
 - *NASA LaRC developed*
 - *Euler and Navier-Stokes*
 • Cell based
 • Implicit
 - *Spalart-Allmaras turbulence model*
 • Wall function
 - *Fully turbulent*

• LM Previous Experience
 - *Extensively utilized - main CFD code for over 3 years*
 - *Excellent correlation with wind tunnel and flight data*
Grids Description

- **Baseline FV** (Full Viscous) - Workshop Provided
 - Solutions generated but not reported
 - USM3D bug with force/moment calculation (FV only)
- **Baseline WF** (Wall Function) - NASA LaRC Provided
- **MOD 1 WF** - LMAC Developed
 - Similar to Baseline WF
- **MOD 2 WF** - LMAC Developed
 - Refined wing LE and fuselage nose
 - Otherwise same as MOD 1 WF
- **MOD 3 WF** - LMAC Developed
 - Same as MOD 2 WF with reduced y+

<table>
<thead>
<tr>
<th>Title</th>
<th>Number of Layers</th>
<th>Number of Cells</th>
<th>Number of Nodes</th>
<th>y+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline FV</td>
<td>35</td>
<td>2.74E+06</td>
<td>23290</td>
<td>3</td>
</tr>
<tr>
<td>Baseline WF</td>
<td>11</td>
<td>2.39E+06</td>
<td>25175</td>
<td>50</td>
</tr>
<tr>
<td>MOD 1 WF</td>
<td>11</td>
<td>3.08E+06</td>
<td>32716</td>
<td>40</td>
</tr>
<tr>
<td>MOD 2 WF</td>
<td>11</td>
<td>3.61E+06</td>
<td>40371</td>
<td>40</td>
</tr>
<tr>
<td>MOD 3 WF</td>
<td>12</td>
<td>3.93E+06</td>
<td>40789</td>
<td>20</td>
</tr>
</tbody>
</table>
Convergence Criteria

Alpha=0 degrees, M=0.75, Re=3.0x10^6

MOD 1 GRID
Code Performance / Beowulf Cluster

Code Performance

- Baseline WF Grid (5,000 iters)
 - 2.39×10^6 Cells
- 40 processors / 20 nodes
- CPU Time: 720 hours
- Wall Clock Time: 20.0 hours
- Memory Requirements: 168 words/cell

Cluster Description

- 64 Node Cluster
 - Dual Intel PIII 850 Mhz Processors
 - 128 Total Processors
 - 768 MB PC100 ECC RAM / Node
- 2 Clusters
USM3D Predictions on the DLR-F4 Wing/Body Configuration

\[M=0.75, \ Re=3.0 \times 10^6 \]
USM3D Predictions on the DLR-F4 Wing/Body Configuration

$M=0.75, \ Re=3.0 \times 10^6$
USM3D Predictions on the DLR-F4 Wing/Body Configuration

$M=0.75, \; Re=3.0\times10^6$
USM3D Predicted Wing Surface Pressures on the DLR-F4 Wing/Body Configuration

η = 23.8%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

η = 33.1%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

η = 40.9%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

η = 84.4%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

η = 63.6%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

USM3Dns - with wall fxns
α = 0.25°, M = 0.75, Re = 3.0x10^6
fully turb, C_l = 0.5945

DRA - 8'x8', trans fixed
M = 0.75, Re = 3.0x10^6, C_l = 0.57

η = 18.5%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

η = 51.2%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

η = 84.4%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

η = 63.6%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

η = 51.2%

C_p

0.0 0.2 0.4 0.6 0.8 1.0

X/C

X/C
Summary / Conclusions

• Assessed USM3Dns drag prediction capabilities
 – *Evaluated baseline wall function grid*
 – *Evaluated 3 LMAS generated grids*
 • Investigated wing leading edge and fuselage nose grid refinement effects
 • Investigated initial viscous grid spacing effects
 • Not considered optimal or drag converged grids
 – *Not able to report on full viscous drag results*

• Grid refinement effects
 – *Minimal CL impact*
 – *~5% drag reduction*
 • Not drag converged
 – *Slight CM impact*

• Initial viscous grid spacing effects
 – *Minimal CL and CD impact*
 – *Slight CM impact*
 – *y+ of 40 or 50 sufficient for wall function results with ~8 cells across BL*

• Future work
 – *Evaluate latest USM3Dns recommendations from NASA LaRC*