NLR results obtained using the multiblock structured flow solver ENSOLV

O.J. Boelens
Fluid Dynamics Division
Department of Computational Fluid Dynamics and Aero-elasticity
National Aerospace Laboratory, NLR
The Netherlands
NLR results (ENSOLV)

CFD Method

- **ENSOLV** (part of NLR’s flow simulation system ENFLOW)
 - Time-dependent Reynolds-averaged Navier-Stokes equations
 - Cell-centred, central difference, finite volume scheme
 - (Pseudo) time integration by explicit Runge-Kutta scheme to obtain steady-state solution
 - Artificial dissipation (scalar and matrix) to prevent odd-even decoupling
 - Local time stepping, multi-grid and residual averaging to accelerate convergence

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando
NLR results (ENSOLV)

CFD Method

- **ENSOLV** (part of NLR’s flow simulation system ENFLOW)
 - Original k-ω turbulence model as proposed by Wilcox
 - Slight modification by introduction of ‘cross diffusion’ term to eliminate free-stream dependency of ω
 - Solve $\bar{\omega} = 1/(\bar{\omega} + \bar{\omega}_0)$ instead of $\bar{\omega}$, to remove singular behaviour of $\bar{\omega}$ at solid walls
 - Production term in k-equation has been limited to prevent unphysical high values of k near stagnation point
NLR results (ENSOLV)

Grid

ICEM CFD multi-block C-topology grids for wing/body and wing/body/pylon/nacelle

- Coarse: 3.3 M elements
- Medium: 5.5 M elements
- Fine: 10 M elements
- Coarse: 4.5 M elements
- Medium: 8.3 M elements
- Fine: 13.7 M elements
NLR results (ENSOLV)

Solution information

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Const. CL</th>
<th>CPU (h)</th>
<th>Mem (GByte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wb</td>
<td>coarse</td>
<td>1500</td>
<td>1500 (1 MG)</td>
<td>1000 (1 MG)</td>
<td>1250 (1MG)</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1500</td>
<td>1500 (1MG)</td>
<td>1000 (1 MG)</td>
<td>1250 (1MG)</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>1500</td>
<td>1500</td>
<td>750</td>
<td>1000</td>
<td>18.5</td>
</tr>
<tr>
<td>wbnp</td>
<td>coarse</td>
<td>1500</td>
<td>1000</td>
<td>1250</td>
<td>27.8</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1500</td>
<td>1500</td>
<td>1000</td>
<td>1250</td>
<td>47.1</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>1500</td>
<td>1500</td>
<td>1000</td>
<td>1250</td>
<td>66.4</td>
</tr>
</tbody>
</table>

- **Computer platform:** NLR’s NEC SX-5/8B parallel vector super computer
 - Operating system: SUPER-UX sx5 11.1 E SX-5/8B
 - Compiler: FORTRAN90/SX Version 2.45 for SX-5

- **Number of processors used (1-6) was such that complete simulation could be carried out within one night (12 h)**
NLR results (ENSOLV)

Case 1: Single point grid convergence study

- **Mach = 0.75**
- **Reynolds Number = 3x10^6**
- **Lift Coefficient = 0.500±0.001**
- **“Fully turbulent” solution**

<table>
<thead>
<tr>
<th>Grid Type</th>
<th>CD</th>
<th>C_D Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>0.0046</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>0.0054</td>
<td></td>
</tr>
<tr>
<td>Fine</td>
<td>0.0051</td>
<td></td>
</tr>
<tr>
<td>Experiment</td>
<td>0.0043</td>
<td></td>
</tr>
</tbody>
</table>
NLR results (ENSOLV)

Case 1: Single point grid convergence study (wb)

\(y^+ \)

\(C_p \)

Coarse: 3.3 M elements

Medium: 5.5 M elements

Fine: 10 M elements

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando
NLR results (ENSOLV)
Case 1: Single point grid convergence study (wbnp)

y^+

Coarse: 4.5 M elements

Medium: 8.3 M elements

Fine: 13.7 M elements

C_p

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando
NLR results (ENSOLV)
Case 1: Single point grid convergence study (wb)

y/b=0.331
Experiment
Alpha=0.490 CL=0.4984

y/b=0.514

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando
NLR results (ENSOLV)

Trip location

- **Lower surface**
 - 25% chord

- **Upper surface**
 - 5% chord at root
 - 15% chord at kink
 - 15% chord at $h=0.844$
 - 5% chord at tip

NLR results (ENSOLV) Trip location

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando
NLR results (ENSOLV)
Case 2: Drag Polar

- Mach = 0.75
- Reynolds Number = 3x10^6
- Angle of Attack = -3, -2, -1.5, -1, 0, 1, 1.5°
- “Tripped” solution

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando
NLR results (ENSOLV)
Case 2: Drag Polar (wb)

Experiment

- \(y/b = 0.331 \)
- Alpha = 0.490
- CL = 0.4984

- \(y/b = 0.514 \)

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando
NLR results (ENSOLV)

Case 3: Effect of transition

- **Mach = 0.75**
- **Reynolds Number = 3x10^6**
- **Lift Coefficient = 0.500 ± 0.001**
- “Fully turbulent” vs. “Tripped” solution

<table>
<thead>
<tr>
<th>CD Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulent: 0.0054</td>
</tr>
<tr>
<td>Tripped: 0.0054</td>
</tr>
<tr>
<td>Experiment: 0.0043</td>
</tr>
</tbody>
</table>

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando
NLR results (ENSOLV)
Case 3: Effect of transition

Experiment
Alpha=0.490 CL=0.4984

y/b=0.331
y/b=0.514

2nd AIAA Drag Prediction Workshop, June 21-22, 2003, Orlando