

A Wing-Body Fairing Design for the DLR-F6 Model: A DPW-III Case Study

John C. Vassberg Anthony J. Sclafani Mark A. DeHaan

AIAA Paper 2005-4730

AIAA 23rd Applied Aerodynamics Conference Toronto, Canada 6-9 June, 2005

FX2B Fairing Geometry Slide 1 of 10

FX2B Design Objectives

- Eliminate Flow Separation at SOB
 - Based on OVERFLOW Solutions
 - M=0.75 , CL=0.5 , Rn=3M
 - Central-Difference & Baldwin-Barth
 - Worst-Case Scenario of Separation
- Retrofit Add-On Part to DLR-F6 Model
- Available to Public Domain
 - Not Based on a Proprietary Process
 - Not Constrained by Real-World Factors
 - Not a Drag Minimization Study

FX2B Fairing Geometry Slide 2 of 10

Baseline DLR-F6 WB

FX2B Fairing Geometry Slide 4 of 10

FX2B Fairing Geometry

DLR-F6 WB w/ FX2B

CFD Drag Prediction Workshop

Baseline F6 w/o Fairing

Slide 7 of 10

DLR-F6 w/ FX1 Fairing

CFD Drag Prediction Workshop

DLR-F6 w/ FX2B Fairing

DLR-F6 Wing-Body Surface Streamlines – Side of Body Flow

Medium Grid, Mach = 0.75, C_L = 0.50, R_N = 5.0 million, Fully Turbulent, SA

FX2B Fairing Geometry Slide 10 of 10

