CFL3D and OVERFLOW Results on the DLR-F6 Configuration from the 3rd Drag Prediction Workshop

Christopher L. Rumsey S. Melissa Rivers Joseph H. Morrison

NASA Langley Research Center

Methods

- CFL3D cell-based upwind Roe scheme
 - using supplied overset grids
 - SST turbulence model
 - thin layer or full N-S available (*new feature in 2005)
- OVERFLOW node-based upwind Roe scheme
 - using supplied overset grids
 - SST turbulence model
 - thin-layer or full N-S available

Earlier work

- Previous similar study on DLR-F6 from DPW-II:
 - Lower Re (3 million)
 - Most comparisons between CFL3D and OVERFLOW for SA model (overset grids)
 - CFL3D runs on 1-to-1 grids explored other turbulence models (SST & EASM-ko)
 - Computers & Fluids 34 (2005) 785-816

Some conclusions from our DPW-II study

- Grid density studies inconclusive
 - 1-to-1 grids were poor quality and inconsistently refined
 - Overset grids indicated likelihood that mediumlevel grids still not in asymptotic region
 - Estimate: medium grids in error by ~10 counts from infinitely-refined grid
- Effect of viscous model
 - Full N-S predicted larger wing-root separation bubble than thin-layer
 - Other than this, no major global effect of t1 vs. t3 vs. full: max 5 drag counts difference

Some conclusions from our DPW-II study

- Effect of code
 - CFL3D predicted consistently lower C_L levels than OVERFLOW (by at most 0.036)
 - At C_L=0.5, C_D was different by 5 counts (WB) between the two codes on med or fine grid levels

DPW-III Grid Study – CL=0.5, fully turbulent, SST

Code	WB(c)	WB(m)	WB(f)	FX2 B(c)	FX2B(m)	FX2B(f)
CFL3D, thin	ο	0	0	ο	ο	ο
CFL3D, full	ο	ο	0	ο	ο	ο
OVERFLOW, thin	x	x	х	x	x	x
OVERFLOW, full	ο	ο	Х	X	X	ο

(red shaded = unsuccessful – would not run/converge)

DPW-III Drag polar – fully turbulent, SST

Code	Case	-3	-2	-1	-0.5	0	0.5	1	1.5
C, full	WB(m)	ο	ο	ο	ο	ο	ο	ο	ο
O, full	WB(m)	ο	0	ο	ο	0	ο	ο	0
C, full	FX2B (m)	ο	0	ο	ο	0	ο	ο	ο
O, full	FX2B (m)	Х	Х	Х	Х	Х	Х	Х	х
C, thin	WB(m)					0			
O, thin	WB(m)					Х			
C, thin	FX2B (m)					0			
O, thin	FX2B (m)					Х			

(red shaded = unsuccessful – would not run/converge)

Summary of runs

- 60 runs planned (30 for each code)
- OVERFLOW had problems running SST turbulence model
 - Only 11 out of 30 cases worked
 - Particular difficulties with thin-layer and FX2B configuration

Grid effect, WB, $C_L=0.5$

9

Grid effect, WB, $C_L=0.5$

10

Grid effect, C_L=0.5

comparing WB and FX2B configurations, CFL3D (full N-S)

Grid effect, C_L =0.5 comparing WB and FX2B configurations, CFL3D

Lift curve on medium grid

WB, both codes

Lift curve on medium grid

Drag polar on medium grid

WB, both codes

Drag polar on medium grid

C_M on medium grid

WB, both codes

C_M on medium grid

Grid density effect on Cp WB case, CFL3D, full N-S

Y.

巨

- X

20

Grid density effect on Cp FX2B case, CFL3D, full N-S

Y.

Ĺ

22

Viscous model effect on Cp

WB case, CFL3D, fine grid

Y

þ

- X

Code effect on Cp

WB case, full N-S, med grid

Y

þ

- X

26

Code effect on Cp

FX2B case, full N-S, fine grid

Y

Į

- X

28

Viscous model effect on separation bubble WB case, CFL3D, fine grid

full N-S

thin-layer N-S

Some conclusions from our DPW-II study (revisited)

- Grid density studies inconclusive
- N/A 1-to-1 grids were poor quality and inconsistently refined
 - Overset grids indicated likelihood that medium-level grids still not in asymptotic region (finer grid needed to confirm – 90M?)
 - ? Estimate: medium grids in error by ~10 counts from infinitelyrefined grid (based on CFL3D alone, it may be less... finer grid needed to confirm)
 - Effect of viscous model
 - Full N-S predicted larger wing-root separation bubble than thin-layer
- Other than this, no major global effect of t1 vs. t3 vs. full: max 5 drag counts difference

Some conclusions from our DPW-II study (revisited)

- Effect of code
- X CFL3D predicted consistently lower C_L levels than OVERFLOW (by at most 0.036) (different turbulence model - SST)
- At C_L=0.5, C_D was different by 5 counts (WB) between the two codes on med or fine grid levels

Additional conclusions

- Full N-S important when separation present
 - Affects prediction of bubble size
 - For FX2B (no separation) only 1 drag count difference between thin-layer and full
- Structured grids do not predict T.E. separation
 - Possibly due to insufficient spanwise grid resolution

Additional conclusions

- Problems with OVERFLOW using SST model (likely coding issue)
 - When it runs, OVERFLOW and CFL3D are generally very close:
 - within 5 drag counts at $C_L=0.5$
 - within 6 drag counts over entire drag polar
 - within 0.005 in C_M over entire drag polar
 - C_L very close at low alphas; max difference of 0.034 at high alphas

Typical CPU timings for the DPW-III fine overset grid (27M nodes)

- Typically at least 2000-5000 cycles needed per case
- OVERFLOW on PC Linux cluster (15 processors)
 - 27 hrs wall-clock for 2000 MG cycles
- CFL3D on PC Linux cluster (10 processors)
 - 150 hrs wall-clock for 2000 MG cycles
 - Slower (in part) because cannot do mesh sequencing on overset grids

Note on "fully turbulent"

- When "fully turbulent", models transition on their own
- For SA and SST, this location can be inconsistent!
 - often MOVES DOWNSTREAM as grid is refined
- See AIAA 2006-3906