

OVERFLOW Drag Prediction for the DLR-F6 Wing-Body Transport Configuration

Tony J. Sclafani, Mark A. DeHaan, Neal A. Harrison, John C. Vassberg

The Boeing Company Phantom Works Huntington Beach, California, USA

3rd AIAA CFD Drag Prediction Workshop San Francisco, California June 3-4, 2006

- Flow Solver / Computing Platform
- Grid Information
- Case 1: DLR-F6 Wing-Body with and without FX2B Fairing
 - Convergence Histories and Residuals
 - Grid Sensitivity Study
 - Drag Polar
 - Streamlines / Pressures / Spanloads
- > Trailing-Edge Grid Study
- Conclusions

DLR-F6 Wing-Body Flow Solver / Computing Platform

OVERFLOW MPI Version 2.0z

- Setup was consistent with DPW2
- Spalart-Allmaras turbulence model
- Roe upwind scheme
- Viscous terms computed in all three directions (full N-S)

Parallel Processing Done on a PC Cluster

- Linux operating system
- > 906 Opteron dual CPU nodes with 4 GB of memory each
- F6 wing-body medium grid run on 8 processors (4 nodes)
 - 3.2 hours per 1000 fine grid iterations
 - Full convergence reached after 4000 fine grid iterations
 - Roughly 13 hours of wall clock time needed per case for the medium grid

DLR-F6 Wing-Body Grid Information

- ➤ The F6 and FX2B grid systems consisted of 12 zones.
- > The medium grid is typical for drag-quality design studies.

F6

				Constant	Growth
Grid	Points	1 st Cell Size	y+	Cells	Rate
Coarse	2,387,918	.00055 mm	.90	2	1.29
Medium	7,985,236	.00038 mm	.62	3	1.19
Fine	26,892,352	.00025 mm	.41	4	1.12

F6 with FX2B

				Constant	Growth
Grid	Points	1 st Cell Size	у ⁺	Cells	Rate
Coarse	2,395,170	.00055 mm	.90	2	1.29
Medium	8,020,348	.00038 mm	.62	3	1.19
Fine	26,969,192	.00025 mm	.41	4	1.12

DLR-F6 Wing-Body **Convergence** Histories

wb C₁ Total

Force/Moment History

Total Lift Coefficient

- F6 geometry \geq
- Fully turbulent \triangleright
- Reynolds Number = 5 million \triangleright
- Mach = 0.75 \triangleright
- $\alpha = 0^{\circ}$ \triangleright

0.0285

0.028

0.027

0.0265

1000

2000

Fotal Drag Coefficient 0.0275

- Medium grid \triangleright
- These flat-line convergence histories \triangleright are representative of the coarse/fine grid as well as FX2B solutions at the above condition.

0.53

0.52

DLR-F6 Wing-Body Grid Sensitivity Study

Wing-Body OVERFLOW Results Mach = 0.75, B_N = 5.0 million, C_L = 0.5, Fully Turbulent

- Dashed lines are linear extrapolation of medium and fine data.
- The total drag increment (FX2B F6) has a large variation with grid refinement.
 - $(\Delta C_D)_{\text{coarse}}$ = -6.7 counts
 - $(\Delta C_D)_{medium}$ = -10.2 counts
 - $(\Delta C_D)_{\text{fine}}$ = -13.6 counts
 - $(\Delta C_D)_{extrap}$ = -16.4 counts

DLR-F6 Wing-Body Grid Sensitivity Study (cont.)

Wing-Body OVERFLOW Results

Mach = 0.75, R_N = 5.0 million, C_L = 0.5, Fully Turbulent

- As with drag, alpha and C_M increments grow with grid convergence.
- Based on these two plots, it's difficult to say one config is closer to asymptotic convergence than the other.

DLR-F6 Wing-Body Surface Streamlines – Side of Body Flow

Medium Grid, Mach = 0.75, C_L = 0.50, R_N = 5.0 million, Fully Turbulent

DLR-F6 Wing-Body Surface Streamlines

DLR-F6 Wing-Body Wing Pressure Comparison

DLR-F6 Wing-Body Spanload Comparison

DLR-F6 Wing-Body OVERFLOW Results

DLR-F6 Wing-Body F6 Dense Trailing-Edge Cap Grid

DLR-F6 Wing-Body F6 Dense Trailing-Edge Cap Grid (cont.)

Medium Grid, Mach = 0.75, C_L = 0.50, R_N = 5.0 million, Fully Turbulent

- Surface streamlines indicate:
 - No significant change to side-of-body separation
 - No TE separation in either solution (outboard of side-of-body separation)

DLR-F6 Wing-Body Conclusions

Convergence Histories

- > C_L converged to 0.5 +/- 0.0002
- \succ No C_L or C_D fluctuation
 - Lift varied by less than 0.00001 over last 100 iterations
 - Drag varied by less than 0.000001 over last 100 iterations
- Residuals reduced ~4 orders of magnitude

Grid Convergence Study

- > Not sure if asymptotic convergence was achieved on baseline
 - Characterized with side-of-body separation bubble
- Probably achieved asymptotic convergence on FX2B
 - Characterized with predominately attached flows
- Extra-fine grid may be required to eliminate uncertainty
 - Possible follow-on study

Drag Increments (FX2B – F6)

- ➢ Medium grid = -10.2 counts
- Extrapolated = -16.4 counts
- Increments tainted by baseline calculations