DPW3 results for the DLR F6 WB and WBF

E. van der Weide, J.J. Alonso Department of Aeronautics & Astronautics Stanford University

E. Arad, M. Bercovici, Y. Shechner Rafael Haifa, Israel

Third Drag Prediction Workshop San Francisco, CA, June 3-4, 2006

Outline

- Numerical algorithm
- Turbulence models
- Platforms/Wall clock times
- Results
- Future work

Numerical algorithm

- Cell-centered Finite Volume discretization.
- Central discretization of the advective terms plus scalar artificial dissipation for the mean flow.
- Upwind discretization of the advective terms for the turbulence equations, either 1st or 2nd order (with MinMod limiter).
- Compact central discretization of the viscous fluxes.
- Geometrical multigrid in combination with Runge-Kutta type explicit smoothers for the mean flow.
- Segregated solution of the turbulence equations using DD-ADI schemes. No multigrid for the turbulence.
- "Automatic" parallelization \Rightarrow #processors independent of #blocks

Turbulence models

- Spalart-Allmaras.
 - Used in fully turbulent mode.
- v²-f, 4-equation model developed by Durbin.
 - k- ε model extended with two additional equations.
 - v: fluctuation energy normal to the wall (channel flow)
 - f: models non-local effects, in particular the influence of the wall
 - solved as two 2X2 coupled systems.
 - free-stream eddy-viscosity ratio \geq 3.6 to avoid negative k.

Platforms/Wall clock times

- Linux cluster, 3.6 GHz dual Xeon processors.
 - Wall clock time, 32 processors, medium mesh (9.5 million cells): 5-10 hours
- ASCI QSC (Los Alamos), 1.25 GHz Dec Alpha processors.
 - Wall clock time, 64 processors, medium mesh (9.5 million cells): 7-14 hours

Grid (modified Icem grid)

- Higher resolution on the wing and fuselage
- Less points in the farfield
- 3-level multigrid
- Coarse grid: 3 million cells. Medium grid: 9.5 million cells.

Convergence Wing Body plus FX2B fairing

Convergence Wing Body plus FX2B fairing

 M_{∞} = 0.75, α = -3.0°, Re_c = 5•10⁶, c = 141.2 mm, Spalart-Allmaras model

Pressure distributions

 M_{∞} = 0.75, C_{L} = 0.5, Re_{c} = 5•10⁶, c = 141.2 mm, Spalart-Allmaras model

Coefficients Wing Body

Coefficients Wing Body plus FX2B fairing

Oilflow Patterns (1)

Wing body, M_{∞} = 0.75, α = -3.0°, Re_{c} = 5•10⁶, c = 141.2 mm

Spalart-Allmaras

v2-f

Oilflow Patterns (2)

Wing body, M_{∞} = 0.75, α = 1.5°, Re_c = 5•10⁶, c = 141.2 mm

Spalart-Allmaras

v2-f

Oilflow Patterns (3)

Wing body, M_{∞} = 0.75, C_{L} = 0.5, Re_{c} = 5•10⁶, c = 141.2 mm

Spalart-Allmaras

v2-f

Oilflow patterns (4)

Wing body FX2B fairing, M_{∞} = 0.75, C_{L} = 0.5, Re_{c} = 5•10⁶, c = 141.2 mm

Spalart-Allmaras

Future work

- Vertex-centered discretization (possibly higher order) under development.
- DD-ADI schemes for the mean flow to speed up convergence.
- Use other turbulence models, e.g. k- ω , Menter's SST.
- Perform the fine grid computations.
- Abstract submitted for Reno 2007.

