

PAB3D simulations for 3rd AIAA Drag Prediction Workshop

Alaa Elmiligui Analytical Services & Materials, Inc. Hampton, VA 23666 K.S. Abdol-Hamid NASA Langley Research Center, Hampton VA 23681 Steven J. Massey Eagle Aeronautics, Inc., Hampton, VA 23669

San Francisco, CA June 3-4, 2006

3rd Drag Prediction Workshop

Presentation Outline

- Introduction
- Governing Equations
- Results and Discussion
- Summary

Introduction

- Case 1 DLR-F6-WB and FX2B configurations
- Code PAB3D structured multi-block
- Grid Boeing grids (coarse, medium, medium-fine, & fine)
- Mach = 0.75, Re = 5 million

Methodology PAB3D CFD Code

- 3-D RANS Upwind Code
- Multi-block structured with general patching
- Parallel computing using MPI
- Mesh sequencing
- Low memory requirement
- Graphical user interface (GUI) capabilities
- Linear two-equation k-ε models
- Suite of algebraic Reynolds stress models
- LES & PANS

Governing Equations

Reynolds (Favre) Averaged Navier-Stokes RANS

Governing Equations

Two Equation K- & Model

Governing Equations

Turbulent Stresses

Two Equation K- ε Linear Model (NASA CR-4702, December 1995)

$$-\overline{u_i u_j} = 2\upsilon_t S_{ij} - \frac{2}{3}\delta_{ij}k$$

Shih, Zhu, & Lumley (SZL) Nonlinear Model NASA TM-106644, August 1994

$$\frac{1994}{-\overline{u_i u_j}} = 2\upsilon_t S_{ij} - \frac{2}{3}\delta_{ij}k + 2\beta \frac{K^3}{\varepsilon^2} (W_{ik}\overline{S}_{kj} - \overline{S}_{ik}W_{kj})$$

Girimaji Nonlinear Model

ICASE 95-82, December 1995

$$-\overline{u_{i}u_{j}} = 2\upsilon_{i}S_{ij} - \frac{2}{3}\delta_{ij}k + 2C_{\mu}^{*}\frac{K^{3}}{\varepsilon^{2}}[-G_{2}(W_{ik}S_{kj} - S_{ik}W_{kj}) + G_{3}(S_{ik}S_{kj} - \frac{1}{3}S_{mn}S_{mn}\delta_{ij})]$$

where
$$W_{ij} = \frac{1}{2}(\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial u_{j}}{\partial x_{i}}) \& \overline{S}_{ij} = S_{ij} - \frac{1}{3}S_{kk}\delta_{ij}$$

Computational Grids, Y+ BOEING H-Grids generated by : T.J. Kao and N. J. Yu for Ed. Tinoco

Case1, F6-WB & FX2B Mach 0.75, Re=5*10⁶

Turbulence Model/ Grid	Coarse	Medium	Medium fine	Fine
k E	X	X	X	X
SZL	Х	X	Х	Х
Girimaji	Х	X	Х	Х

3rd Drag Prediction Workshop

Convergence History

Typical CPU Timings

Grid	Blocks	# of Cell * 10 ⁶	Processors	Wall Time	Wall Time /grid point 10 ⁻⁶ sec
Coarse	26	2.3 *106	24	02:02	0.4196472
Medium	38	8.0	38	5.42	0.3032175
Medium fine	49	15.8	46	8:33	0.2713972
Fine	58	27.2	56	17:45	0.2537843

3rd Drag Prediction Workshop

Grid Convergence, Girimaji

Mach =0.75, Re=5*10⁶, AOA=0.0

Grid	CL	CD	CM_TOT
Coarse	0.496	0.03224	-0.1227
Medium	0.487	0.02833	-0.1362
Medium fine	0.485	0.02743	-0.1377
Fine	0.485	0.02728	-0.1378

Turbulence Model Effect Mach =0.75, Re=5*10⁶, AOA=0.0

Grid	CL	CD	CM_TOT
KE	0.499	0.03086	-0.1427
SZL	0.477	0.02630	-0.1324
Girimaji	0.485	0.02728	-0.1378

Lift Curve on Medium Grids

Mach =0.75, Re=5*10⁶

3rd Drag Prediction Workshop

Drag Polar on Medium Grids

Mach =0.75, Re=5*10⁶

3rd Drag Prediction Workshop

June 3, 2006

0.05

F6_WB and FX2B Comparison, SZL

Coefficient of Pressure Mach =0.75, Re=5*10⁶, AOA=0.0

0.2

0

0.4

X/C

0.6

0.8

Y/B02=0.239

Y / B02 = 0.15

Y/B02=0.239

Grid Effect on Cp Mach =0.75, Re=5*10⁶, AOA=0.0

Y / B02 = 0.239

Y/B02=0.15

Upper Wing Streamlines, F6-WB

Mach =0.75, Re=5*10⁶, AOA=0.0

SZL medium grid Thin Shear Layer in 2 directions $k\epsilon$ medium grid Thin Shear Layer in 2 directions

3rd Drag Prediction Workshop

Upper Wing Streamlines, F6-WB

Mach =0.75, Re=5*10⁶, AOA=0.0

SZL medium grid

Girimaji medium grid

3rd Drag Prediction Workshop

Upper Wing Streamlines, F6-WB

Mach =0.75, Re=5*10⁶, AOA=0.0, SZL

Thin Shear Layer in 2 directions, JK

Thin Shear Layer in 3 directions, IJK

3rd Drag Prediction Workshop

Summary

- PAB3D was utilized to compute the flow field of DLR F6-Wb & FX2B
- Three different turbulence Models and four different grid resolutions were utilized
- AS expected ke models produced the highest skin friction
- SZL & Girmaji algebraic Reynolds Stress models predicts similar separation bubbles
- Turbulence model affects size of separation bubble.
- Same suite of algebraic Reynolds Stress models are ported into USM3D

Need to develop innovative turbulence models for flow separation and implement the models within state-of-the-art RANS flow solvers