

3rd CFD Drag Prediction Workshop San Francisco, California – June 2006

Case 1 F6 Fairing Drag Prediction for the 3rd CFD Drag Prediction Workshop

Edward N. Tinoco & Venkat Venkatakrishnan

Enabling Technology & Research Boeing Commercial Airplanes P.O. Box 3707 MC 67-LK Seattle, WA 98124-2207

Tinoco

Objective

Investigate the use of a "Production Navier-Stokes Analysis System" for CFD Drag Prediction

-Major interest is in the prediction of drag increments

-Use "standard" processes as much as possible

Acknowledgement

None of this work would have been possible without the considerable contributions of:

N. Jong Yu Tsu-Yi Bernard Su Tsong-Jhy Kao Senthan Swaminathan Moeljo Hong Emanuel R Setiawan

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

N BOEING

ZEUS/CFL3D

Driver for Surface Grid Generation, Volume Grid Generation, Navier-Stokes Analysis, and Post-processing

San Francisco, California – June 2006

CFL3D – Thin Layer Navier-Stokes Code

- Developed at NASA Langley (Jim Thomas, Kyle Anderson, Bob Biedron, Chris Rumsey, & …)
- Finite volume
- Upwind biased and central difference
- Multigrid and mesh sequencing for acceleration
- Multiblock with 1-1 blocking, patched grid, and overlap-grid
- Numerous turbulence models
 - Spalart-Almaras SA Model
 - Menter's k- ω SST Model
- Time accurate with dual-time stepping
- Runs efficiently on parallel machines through MPI

San Francisco, California – June 2006

Structured Multi-Block Wing-Body Grids **Constructed with Boeing Zeus/Advancing Front Method у**1 Body γZ yЗ <0.1% b Tip <0.1% b Wing X5 xЗ γ+ **x1** x2 **X4** <0. '% c <0.1% c

	x1	x2	x3	x4	x5	y1	y2	у3	Z
Course	16	48	80	56	16	24	48	16	56
Med	24	72	120	88	24	32	72	24	84
Medfine	28	92	156	112	32	36	92	28	104
Fine	32	108	180	136	36	56	112	32	128

Blunt TE	Z	y2
Course	32	48
Med	48	72
Medfine	60	92
Fine	72	112

Boundary Layer	# Cells	Ave y+
Course	24	0.82
Med	32	0.60
Medfine	40	0.50
Fine	48	0.40

	_
Total Grid Size	
2.6E+06	
9.2E+06	
1.8E+07	
3.1E+07	F
	-0

DEDEING

San Francisco, California – June 2006

Structured Multi-Block Wing-Body Grids Constructed with Boeing Zeus/Advancing Front Method

6

(BOEING

San Francisco, California – June 2006

Typical Centerline Grid

 $\ensuremath{\mathbb{C}}$ The Boeing Company 2006

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

9

Typical I-plane Grid H-Topology

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

Grid Refinement – F6 Wing-Body

10

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

11

BOEING

Grid Refinement – F6 Wing-Body w/FX2 Fairing

© The Boeing Company 2006

Tinoco

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

Medium Grid F6 Wing-Body w/wo/FX2 Fairing

F6 Wing-Body - Mediam Grid M=0.75, CL=0.50

F6 Wing-Body w/FX2 Fairing

San Francisco, California – June 2006

F6 WB w/wo FX2 – Drag Convergence

 $\ensuremath{\mathbb{C}}$ The Boeing Company 2006

3rd CFD Drag Prediction Workshop San Francisco, California – June 2006

F6 Wing-Body - Wing Cp's – Comparison with Re=3M Test

3rd CFD Drag Prediction Workshop San Francisco, California – June 2006

F6 Wing-Body - Wing Cp's – Grid Convergence

15

BOEING

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

16

F6 Wing-Body - Wing Cp's – Turbulence Modeling Effects

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

F6 Wing-Body - Wing Cp's – Effect of Fairing

17

DBOEING

 $\ensuremath{\mathbb{C}}$ The Boeing Company 2006

Tinoco

San Francisco, California – June 2006

 $\ensuremath{\mathbb{C}}$ The Boeing Company 2006

DEDEING

19

F6 WB w/wo FX2 - Polar Shape – Turbulence Modeling

San Francisco, California – June 2006

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

F6 WB Separation Bubble on Wing – Turbulence Modeling

 $\ensuremath{\mathbb{C}}$ The Boeing Company 2006

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

3rd CFD Drag Prediction Workshop San Francisco, California – June 2006

F6 WB w/wo FX2 – Skin Friction Drag Convergence F6 Wing-Body w/wo FX2, MACH = 0.75Re = 5 Million, Fixed CL=0.50 0.0126 0.0126 CFL3D with SST Turbulence Model CFL3D with SA Turbulence Model 0.0124 0.0124 1 Count **L**riction **B**riction F6 WB w/FX2 0.0122 F6 WB F6 WB w/FX2 0.0120 1 Count

F6 WB 0.0118 0.0118 31.6M 11.2M 6.1M 3.9M 2.8M 31.6M 11.2M 6.1M 3.9M 2.8M 0.0116 0.00003 0.00002 0.00000 0.00001 0.00002 0.00004 0.00005 0.00000 0.00001 0.00003 0.00004 0.00005 $GRIDFAC = 1/(GRIDSIZE)^2/3$ $GRIDFAC = 1/(GRIDSIZE)^2/3$

© The Boeing Company 2006

F6 WB w/wo FX2 – Pressure Drag Convergence

24

DBOEING

San Francisco, California – June 2006

25

F6 WB w/wo FX2 – Drag Increment Grid Convergnece

© The Boeing Company 2006

Tinoco

San Francisco, California – June 2006

CFD++ – Unstructured Grid Navier-Stokes Code

- Developed by Metacomp Technogies
- Unified grid, unified physics and advanced numerical discretization and solution framework.
- Finite volume
- Upwind biased
- Multigrid for acceleration
- Arbitrary elements and has overset capabilities.
- Choice of turbulence models
 - Spalart-Almaras SA Model
 - k-ε-Rt Model
- Time accurate with dual-time stepping
- Runs efficiently on parallel machines through MPI

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

CFD++ – Unstructured Grid Navier-Stokes Code Grid Convergence

 $\ensuremath{\mathbb{C}}$ The Boeing Company 2006

San Francisco, California – June 2006

Concluding Remarks

Zeus/CFL3D – Structured Grids

- Zeus/CFL3D exhibited reasonable grid convergence characteristics for both SA and SST turbulence models.
 - •Good sequence of grids
 - •Good solution convergence
 - •Concern with trend at finest grids
- Separation bubble size little affected by grid size, some difference with turbulence model
- Pressure distributions essentially invariant with grid

CFD++ - Unstructured Grids

• F6 Wing-Body: Good temporal convergence on coarse and medium St. Louis mixed-element grids; non-convergence observed on fine St. Louis grid because of large, spurious side of body separation.

• F6 Wing-Body with FX2 Fairing: Very good temporal convergence on all St. Louis mixed-element grids. Divergence observed with Langley grids, generated using VGRID.

