

DPW-3 DLR F6/FX2B Results

O. Brodersen Institute of Aerodynamics and Flow Technology DLR 38108 Braunschweig Germany

Method

- RANS solver DLR TAU
- Unstructured database, node based
- State-of-the-Art algorithms
- 1- and 2-eq. turbulence models
- Fluid-Structure coupling
- Overlapping grids
- Grid adaptation
- Hypersonic extensions
- C code and Python scripting
- High performance on parallel machines
- Applied in European aircraft industry and research

Grids

- Unstructured hybrid grids generated with Centaur from Centaursoft
- Prismatic elements for BL
- 3 grid densities
- Specification of sources for wing surface
- Constant refinement factor

	Coarse	Medium	Fine
Nodes	2.46 (f6wb)	5.10	8.53
	2.87 (fx2b)	6.11	10.30
Boundary nodes	45065	85769	121588
	60423	112672	167434
Prismatic layers	21	31	40

Results

F6wb

- TAU sae, medium prismatic grids, CL=0.5
- DPW-2:
 - separations Wing/fuselage, pylon/wing found
 - no trailing edge flow separation
- Flow separation at fuselage wing junction
- No separation for FX2B (all α)

F6fx2b

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

-0.9 -0.65 -0.4 -0.15 0.1

0.35

Slide 4 of 18, Brodersen DPW-3, June 2006

Convergence Study

Slide 5 of 18, Brodersen DPW-3, June 2006

Influence on Flow Separation F6wb for CL=0.5

Influence on Cp for CL=0.5

Results: F6 / F6FX2B

Medium Grid: lift and drag

Slide 8 of 18, Brodersen DPW-3, June 2006

Results: F6 / F6FX2B

Medium Grid: delta drag, moments

Slide 9 of 18, Brodersen DPW-3, June 2006

Results: F6 / F6FX2B

Medium Grid: influence on Cp for CL=0.5

Grids

- Well-known: grid quality and density is important
- Different approach: hexahedrals and tetrahedrals
- Hexahedral elements for BL resolution
- Solar grid generator from Airbus, ARA, BAES
- Grids generated by QinetiQ

	Medium
Nodes	4.24
	4.11
Noues	4.24 4.11

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 11 of 18. Brodersen DPW-3, June 2006

Convergence Study

Slide 12 of 18, Brodersen DPW-3, June 2006

Results: Grid Type

F6fx2b: Prismatic / Hexahedral hybrid grids

Slide 13 of 18, Brodersen DPW-3, June 2006

Results: Grid Type

F6wb: Prismatic / Hexahedral hybrid grids

Slide 14 of 18, Brodersen DPW-3, June 2006

Results: Grid Type

Influence of alpha on flow separation

Results: Grid Type

Influence on flow separation F6wb for α =1.5

Results: Grid Type

F6wb / F6fx2b Delta Drag

Summary

- F6fx2b shows improved junction flow
- Delta drag at design point approx.:
 - \approx 1.5 dc for medium grid
 - \approx 9 dc for extrapolation
- Grid density in wing fuselage junction has major effect on size of separation bubble at high alpha (SAE model)
- Delta drag of F6wb-F6fx2b can switch its sign for high / low alpha
- Wing trailing edge separation can not be found with SAE (see also DPW-2)
- Hybrid hexahedral grids are very promising (improved convergence, less nodes)

