

CFX Simulations for 3rd AIAA Drag Prediction Workshop

Robin Langtry; Florian Menter ANSYS Germany, 83624 Otterfing <u>robin.langtry@ansys.com</u> <u>florian.menter@ansys.com</u>

Outline

- CFX-10 solver technology
- CFX-10 mesh strategy
- Results 3rd AIAA DPW

CFX-10

- Finite volume method for mixed unstructured meshes
- Fully conservative vertex based discretisation
- Co-located variable arrangement (pressure based)
- Rhie & Chow velocity-pressure coupling
- Fully coupled equation system (mass and momentum coupling)
- Implicit formulation 1st and 2nd order backward Euler
- Algebraic multigrid solver
- Scalable parallelisation
- Second order time- and space discretisation
- Entire Re and Mach number range

Turbulence Models

- Wide range of turbulence models
 - One-equation KE1E
 - Two-equation (k- ε , k- ω , SST ..)
 - RSM (LRR, SSG, SMC-ω,...)
 - LES, DES, SAS
- AIAA drag prediction based on SST model:
 - Reliable separation prediction
 - high accuracy near walls
 (automatic wall treatment) –
 heat transfer validation
 - Robustness

Automatic Wall Treatment

Goals

- Good results were obtained for the 2nd **Drag Prediction** Workshop using purely **Hexahedral grids**
- Goal of the present work was to investigate the accuracy and required grid sizes for unstructured tet/prism grids.

Drag Polar from the 2nd **DPW** using purely **Hexahedral grids**

5

ANS

Grid CFX-Mesh (Tet/Prism) with out Fairing

Grid CFX-Mesh (Tet/Prism) with Fairing

Grid CFX-Mesh (Tet/Prism) without Fairing

Coarse: 3 Million Nodes

Medium: 8 Million Nodes

Fine: 18 Million Nodes

Grid CFX-Mesh (Tet/Prism) with Fairing

Coarse: 3.2 Million Nodes

Medium: 8.3 Million Nodes

Fine: 20.5 Million Nodes

Grid Hexahedral Mesh

Time Integration

- For small time steps (∆t~1.x10⁻⁵) unsteady oscillations observed at wing-body separated zone (no fairing case).
- Computations carried out in unsteady mode
 - 3 coefficient loops
 - Start with a small time step ($\Delta t \sim 1.x10^{-5}$) and slowly ramp up to a large time step ($\Delta t=2.x10^{-4}$) to damp unsteadiness
- Convergence reached in ~80-150 time steps
- Computing times ~20-40h
 - 20 million nodes (45 GB memory)
 - 21 Dual Core Nodes 2.4GHz Opteron HP Proliant Linux cluster.
- Note that steady state simulations are factor 3 faster (no coefficient loops).

Convergence History

- Unsteadiness damped by large time step ∆t=2x10⁻⁴ s
- Good convergence in forces after 75-150 time steps

Grid Convergence/Richardson Extrapolation

ANSYS[®]

Drag Polar

Lift Curve

© 2005 ANSYS Germany

Lift Curve

Cp Distributions WB no Fairing Effect of Grid Refinement

0.377 Span

Upper Surface Flow Vis.

New ICEM Hybrid Meshing Approach

Summary

- High grid requirements for tet/prism mesh
 - Grid independence not achieved for 20 million nodes
- Richardson extrapolation performed Proper grid refinement achieved?
- Hexahedral grid independent at approx. 12 million nodes(?)
- Future goal: Hybrid approach using hexahedral in BL, tetrahedral every where else (see next slide)