BCFD Predictions for the 3rd AIAA Drag Prediction Workshop (DPW3)

Chad Winkler, Andy Dorgan, Mark Fisher, Mori Mani
The Boeing Company
St. Louis, MO

S. P. Vanka
University of Illinois at Urbana-Champaign
Urbana, IL
• Cell-centered, finite-volume approach
• HLLE flux calculation with second-order spatial reconstruction
 • Linear preserving gradient calculation
• Fully implicit time integration
• Turbulence models
 • Spallart-Allmaras
 • SST
• Additional capabilities: Time accurate LES, real gas effects, hybrid structured/unstructured solver, additional flux formulations available
Grid Details

- Unstructured grids
 - Mixed tetrahedra and prisms (boundary layer)
 - Surface grids generated with MADCAP
 - Volume grids generated with AFLR3
 - Available on NASA FTP site

- Running on 64 bit Linux clusters
 - Typical execution time: 24 hours on fine grid (33M cells)
 running on 33 processors
F6 Wing/Body Grids

Coarse (~4M cells)

Medium (~8M cells)

Fine (~33M cells)
F6 Wing Root Region Grid

Coarse (~4M cells)

Medium (~8M cells)

Fine (~33M cells)
F6 + FX2B Wing Root Region Grid

Coarse (~4M cells)

Medium (~8M cells)

Fine (~33M cells)
• Separation seen on the F6 geometry wing root

• No separation seen on the F6+FX2B geometry wing root
Drag Polars

Drag Polars

- Error bars represent magnitude of oscillations of CL in the F6 solution
- F6+FX2B solutions saw little oscillation
- SST model seen to predict ~10 counts less drag than the S-A model
- FX2B fairing seen to reduce drag regardless of turbulence model
Skin friction behavior

Lower SST drag comes from reduced viscous drag contribution
• SST results seen to extrapolate to a lower drag value when compared to S-A for the FX2B configuration
Crinkle cut, F6+FX2B, S-A, Mach contours at BL=200mm

Isotropic tetrahedra quickly dissipate wake
Wing Cp contours, F6+FX2B, S-A model

Top View

Bottom View

AoA = -3, -1, 0, 1.5
Comparison of Cp between turbulence models
CL=0.5, fine grid

\(\alpha_{SA} = 0.119^\circ \)
\(\alpha_{SST} = 0.166^\circ \)

Shock moves forward in S-A solution

\((Cp_{Spalart} - Cp_{SST})\)

Cp cut at BL=240.37mm
Comparison of skin friction between turbulence models

(Cf_Spalart / Cf_SST)

$\alpha_{S-A} = 0.119^\circ$

$\alpha_{SST} = 0.166^\circ$

• Localized regions of higher skin friction using S-A when compared to SST
• Strong need for best-practices in unstructured grid generation – both surface and volume gridding

• Refine wake region using localized source nodes in volume grid generation

• Difficulty converging F6 cases (without fairing) for both turbulence models

• Turbulence model + grid dependencies
 • ~10 counts drag difference predicted between S-A and SST models
 • Refine grid further to remove any grid dependency on turbulence model

• Future plans
 • Alternate grids – highly resolved and selectively resolved grids, other DPW3 grids
 • Unsteady simulations
 • Cross-code solution comparisons