

BCFD Predictions for the 3rd AIAA Drag Prediction Workshop (DPW3)

Chad Winkler, Andy Dorgan, Mark Fisher, Mori Mani The Boeing Company St. Louis, MO

S. P. Vanka University of Illinois at Urbana-Champaign Urbana, IL

BCFD Code Details

Boeing Technology | Phantom Works

- •Cell-centered, finite-volume approach
- •HLLE flux calculation with second-order spatial reconstruction
 - •Linear preserving gradient calculation
- •Fully implicit time integration
- •Turbulence models
 - •Spallart-Allmaras

•SST

•Additional capabilities: Time accurate LES, real gas effects, hybrid structured/unstructured solver, additional flux formulations available

Boeing Technology | Phantom Works

- Unstructured grids
 - •Mixed tetrahedra and prisms (boundary layer)
 - •Surface grids generated with MADCAP
 - •Volume grids generated with AFLR3
 - •Available on NASA FTP site
- •Running on 64 bit Linux clusters

•Typical execution time : 24 hours on fine grid (33M cells) running on 33 processors

F6 Wing/Body Grids

Boeing Technology | Phantom Works

F6 Wing Root Region Grid

Boeing Technology | Phantom Works

Coarse (~4M cells)

Medium (~8M cells)

F6 + FX2B Wing Root Region Grid

Boeing Technology | Phantom Works

Coarse (~4M cells)

Medium (~8M cells)

Wing Root Region Surface flow – Fine grid $C_L=0.5$

Boeing Technology | Phantom Works

•Separation seen on the F6 geometry wing root

•No separation seen on the F6+FX2B geometry wing root

Drag Polars

Boeing Technology | Phantom Works

•Error bars represent magnitude of oscillations of CL in the F6 solution

•F6+FX2B solutions saw little oscillation

•SST model seen to predict ~10 counts less drag than the S-A model

•FX2B fairing seen to reduce drag regardless of turbulence model

Skin friction behavior

Boeing Technology | Phantom Works

•Lower SST drag comes from reduced viscous drag contribution

Grid convergence study

Boeing Technology | Phantom Works

•SST results seen to extrapolate to a lower drag value when compared to S-A for the FX2B configuration

Crinkle cut, F6+FX2B , S-A , Mach contours at BL=200mm

Boeing Technology | Phantom Works

Isotropic tetrahedra quickly dissipate wake

Wing Cp contours, F6+FX2B, S-A model

Boeing Technology | Phantom Works

Top View

Comparison of Cp between turbulence models CL=0.5, fine grid

Boeing Technology | Phantom Works

Comparison of skin friction between turbulence models

Boeing Technology | Phantom Works

Boeing Technology | Phantom Works

•Strong need for best-practices in unstructured grid generation – both surface and volume gridding

•Refine wake region using localized source nodes in volume grid generation

•Difficulty converging F6 cases (without fairing) for both turbulence models

•Turbulence model + grid dependencies

•~10 counts drag difference predicted between S-A and SST models

•Refine grid further to remove any grid dependency on turbulence model

•Future plans

•Alternate grids – highly resolved and selectively resolved grids, other DPW3 grids

Unsteady simulations

•Cross-code solution comparisons

BT_PW_no-icon_simple.ppt | 16