

OVERFLOW Drag Prediction for the DPW-W1/W2 Wing-Alone Configuration

Tony J. Sclafani, Mark A. DeHaan, Neal A. Harrison, John C. Vassberg

The Boeing Company Phantom Works Huntington Beach, California, USA

3rd AIAA CFD Drag Prediction Workshop San Francisco, California June 3-4, 2006

- Flow Solver / Computing Platform
- Grid Information
- Case 2: DPW-W1 and DPW-W2 Wing-Alone
 - Convergence Histories and Residuals
 - Grid Sensitivity Study
 - Drag Polar
 - Streamlines / Pressures / Spanloads
- Conclusions

DPW-W1/W2 Wing-Alone Flow Solver / Computing Platform

OVERFLOW MPI Version 2.0z

- Setup was consistent with DPW2
- Spalart-Allmaras turbulence model
- Roe upwind scheme
- Viscous terms computed in all three directions (full N-S)

Parallel Processing Done on a PC Cluster

- Linux operating system
- > 906 Opteron dual CPU nodes with 4 GB of memory each
- Wing-alone medium grid run on 4 processors (2 nodes)
 - 5 hours per 1000 fine grid iterations
 - Full convergence reached after 3600 fine grid iterations
 - Roughly 18 hours of wall clock time needed per case for the medium grid

- \succ The W1 and W2 grid systems consisted of 5 zones.
- > The medium grid is typical for drag-quality design studies.

W1/W2

Grid	Points	1 st Cell Size	у +	Constant Cells	Growth Rate
Coarse	1,442,285	.00055 mm	.90	2	1.29
Medium	4,856,149	.00038 mm	.62	3	1.19
Fine	16,265,909	.00025 mm	.41	4	1.12
Extra Fine	55,014,321	.00016 mm	.19	6	1.08

DPW-W1/W2 Wing-Alone Convergence Histories

- > W1 geometry
- Fully turbulent
- Reynolds Number = 5 million
- > Mach = 0.76
- $\succ \alpha = 0.5^{\circ}$

0.0178

0.0170

0.0168

1000

2000

Time Step Number

3000

- Medium grid
- These flat-line convergence histories are representative of the coarse/fine grid as well as W2 solutions at the above condition.

Force/Moment History

Total Drag Coefficient

Log10(L2 norm of RHS)

DPW-W1/W2 Wing-Alone Residuals (cont.)

- \succ All residuals are for the wing grid.
- More time is needed to understand why residual level and behavior changes with alpha and grid refinement.
- > W1 and W2 have similar residuals.

W1 alpha = 0.5 deg Mach = 0.76, Fully Turbulent

• Increments are good.

DPW-W1/W2 Wing-Alone Grid Sensitivity Study

Wing-Alone OVERFLOW Results Mach = 0.76, R_N = 5.0 million, Fully Turbulent

- Dashed lines are linear extrapolation of fine and extra-fine data.
- Drag data for the medium grid are close to the asymptotic range of convergence.
- Lift data for the medium grid are in the asymptotic range.
- L/D comparison shows W2 improvement

DPW-W1/W2 Wing-Alone Grid Sensitivity Study (cont.)

Wing-Alone OVERFLOW Results

Mach = 0.76, B_N = 5.0 million, Fully Turbulent

- Dashed lines are linear extrapolation of fine and extra-fine data.
- It's important to note the scale of the plots. Cf is plotted on a very small scale.

Wing-Body vs Wing-Alone ∆L/D Convergence Comparison

DPW-W1/W2 Wing-Alone Drag Polar

DPW-W1/W2 Wing-Alone Wing Pressure Comparison

DPW-W1/W2 Wing-Alone Spanload Comparison

Wing-Alone Spanload Comparison Mach = 0.76, α = 0.5 deg, R_N = 5 million, Fully Turbulent, Medium Grid

DPW-W1/W2 Wing-Alone *Surface Streamlines*

DPW-W1/W2 Wing-Alone C_L and C_M Curves

DPW-W1/W2 Wing-Alone *Conclusions*

Convergence Histories

- ➢ No CL or CD fluctuation
 - Lift varied by less than 0.00001 over last 100 iterations
 - Drag varied by less than 0.000001 over last 100 iterations
- Variation of residual with alpha and grid size not understood at time of workshop.
 - Wing grid residual drops one order for medium grid at 0.5°
 - Both W1 and W2 solutions had similar residuals

Grid Convergence Study

- Results of the wing-alone grid sensitivity study look reasonable.
- The extra-fine grid solutions helped establish the asymptotic range of grid convergence.
- Grid convergence on ∆(L/D) between the wing-body and wingalone configurations looks very different.
 - Wing-body separation suspected to be the problem.
 - Difficult (if not impossible) to get accurate incremental drag using solutions where separated flow is present.