

3rd CFD Drag Prediction Workshop San Francisco, California – June 2006

Case 2 DPW-W1/W2 Drag Prediction for the 3rd CFD Drag Prediction Workshop

Edward N. Tinoco & Venkat Venkatakrishnan

Enabling Technology & Research Boeing Commercial Airplanes P.O. Box 3707 MC 67-LK Seattle, WA 98124-2207

Objective

Investigate the use of a "Production Navier-Stokes Analysis System" for CFD Drag Prediction

-Major interest is in the prediction of drag increments

-Use "standard" processes as much as possible

Acknowledgement

None of this work would have been possible without the considerable contributions of:

N. Jong Yu Tsu-Yi Bernard Su Tsong-Jhy Kao Senthan Swaminathan Moeljo Hong Emanuel R Setiawan

Tinoco & Venkatakrishnan

San Francisco, California – June 2006

CFL3D – Thin Layer Navier-Stokes Code

- Developed at NASA Langley (Jim Thomas, Kyle Anderson, Bob Biedron, Chris Rumsey, & …)
- Finite volume
- Upwind biased and central difference
- Multigrid and mesh sequencing for acceleration
- Multiblock with 1-1 blocking, patched grid, and overlap-grid
- Numerous turbulence models
 - Spalart-Almaras SA Model
 - Menter's k-ω SST Model
- Time accurate with dual-time stepping
- Runs efficiently on parallel machines through MPI

Run with ICEM Generated Structured Grids

San Francisco, California – June 2006

CFD++ – Unstructured Grid Navier-Stokes Code

- Developed by Metacomp Technogies
- Unified grid, unified physics and advanced numerical discretization and solution framework.
- Finite volume
- Upwind biased
- Multigrid for acceleration
- Arbitrary elements and has overset capabilities.
- Choice of turbulence models
 - Spalart-Almaras SA Model
 - k-ε-Rt Model
- Time accurate with dual-time stepping
- Runs efficiently on parallel machines through MPI

Limited runs with:

- ICEM Structured Grids
- Cessna Unstructured Grids

San Francisco, California – June 2006

DPW-W2 Creation

Objective: Create a companion wing to DPW-W1 for drag increment prediction

- Maintain the same planform and thickness
- Use optimization to change camber and twist
 - TRANAIR single-point optimization
 - Sequential Quadratic Programming
 - Linear Constraints
 - Nonlinear Objectives
 - Minimize drag at a specified lift
 - Variables: 5 camber variables + twist + shear @ 7 spanwise locations

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W1/W2 Shape Comparisons

 $\ensuremath{\mathbb{C}}$ The Boeing Company 2006

Tinoco & Venkatakrishnan

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DEDEING

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

© The Boeing Company 2006

Tinoco & Venkatakrishnan

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

© The Boeing Company 2006

Tinoco & Venkatakrishnan

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

Structured Multi-Block DPW-W1/W2 Grids

Constructed with ICEM

	I_1	I-2	I_3	J_1	J_2	J_3	K_1	K_2	Total Grid Size
Coarse	73	25	73	49	25	49	33	49	1.60E+06
Medium	81	33	81	73	33	73	49	73	4.20E+06
Medium Fine	121	49	121	73	49	73	65	97	8.60E+06
Fine	145	49	145	105	49	105	73	105	1.47E+07

Gridding Guidelines not met - Grids were not uniformly refined!

San Francisco, California – June 2006

DPW-W1/W2 – Drag Convergence – CFL3D

San Francisco, California – June 2006

DPW-W1 – Wing Cp's – Grid Convergence – CFL3D

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W1 – Wing Cp's – Turbulence Modeling Effects – CFL3D

13

DBOEING

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W1 vs W2 – Wing Cp's – CFL3D

© The Boeing Company 2006

Tinoco & Venkatakrishnan

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W1 / W2 – Lift and Pitching Moment – CFL3D

© The Boeing Company 2006

Tinoco & Venkatakrishnan

San Francisco, California – June 2006

16

DPW-W1 / W2 – Polar Shape - Code/Turbulence Modeling

DPW-W1

Less Drag

0.000

Delta CD_Total

0.1

-0.002

-0.001

0.001

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

10

Delta CD_Skin Friciton

-0.001

DPW-W1

Less Drag

0.000

0.001

DPW-W1/W2, MACH = 0.76 Delta CD DPW-W1 - DPW-W2 Re = 5 Million 0.8 0.8 Delta - Pressure Drag 0.8 Delta - Total Drag Delta - Skin Friction 0.7 0.7 0.7 0.6 0.6 0.6 CL CL 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 CFL3D SST Structured Grid Counts CFL3D Structured Grid SA Coun CFD++ – SA Unstructured Grid - Cessna 0.2

DPW-W1 / W2 – Drag Polar Increments

© The Boeing Company 2006

0.1

-0.002

-0.001

Tinoco & Venkatakrishnan

Delta CD-Pressure

DPW-W1

Less Drag

0.000

0.1

0.001

Denne

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W1 / W2 – Total Drag Grid Convergence – CFL3D

San Francisco, California – June 2006

DPW-W1 / W2 – Skin Friction Grid Convergence – CFL3D

© The Boeing Company 2006

Tinoco & Venkatakrishnan

San Francisco, California – June 2006

DPW-W1 / W2 – Drag Increment Grid Convergence – CFL3D

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W1 / W2 – Total Drag Grid Convergence – CFD++

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W1 / W2 – Drag Increment Grid Convergence – CFD++

 $\ensuremath{\mathbb{C}}$ The Boeing Company 2006

Tinoco & Venkatakrishnan

San Francisco, California – June 2006

Concluding Remarks

CFL3D – Structured ICEM Grids

•Convergence characteristics not as good as seen for F6 cases

•More variation in grids

CFD++ - Structured ICEM Grids

Good convergence characteristics

CFD++ - Unstructured Cessna Grids

- No convergence problems on Cessna medium grid for W1.
- Divergence observed on all cases for W2 except for a =2 deg. Solution for all other angles obtained using this as a restart solution.

We should rename to the Grid Convergence Workshop

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

Backup

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W1 Pressure Distributions

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

DPW-W2 Pressure Distributions

© The Boeing Company 2006

Tinoco & Venkatakrishnan

3rd CFD Drag Prediction Workshop

San Francisco, California – June 2006

© The Boeing Company 2006

Tinoco & Venkatakrishnan