3rd AIAA CFD Drag Prediction Workshop

Part 2: DPW-W1/W2

Thomas Scheidegger, Laith Zori and Greg Stuckert Fluent Inc.

San Francisco, June 3-4, 2006

www.fluent.com

DPW-W1/W2 Simulations

- Fluent 6.3 Unstructured Solver
- Boeing Grid
 - Single point grid sensitivity study for M=0.76, α=0.5 on provided point-matched Boeing grids, DPW-W1/W2
 - Coarse grid, 1.51M hex
 - Medium grid, 4.03M hex
 - Medium-fine grid, 8.33M hex
 - Fine grid, 14.34M hex
 - Drag polar for M=0.76, Re=5.0x10⁶ on provided pointmatched medium Boeing grid, fully turbulent

Fluent 6.3 – Solver

- Unstructured, cell-centered
- Several solvers available in Fluent 6.3
 - Pressure based
 - ◆ Segregated (SIMPLE, …)
 - Coupled (New in Fluent 6.3)
 - Density based
 - Implicit (used for DPW-W1/W2 runs)
 - Explicit
- Second-order upwind reconstruction
- Roe-FDS
- Algebraic Multigrid
- Realizable k-ε turbulence model
 - Two-layer zonal model for wall treatment

DPW-W1/W2 Convergence

Boeing Grid, M=0.76, Re=5.0x10⁶

- Robust convergence on highly stretched grids for Density Based Implicit Solver in Fluent 6.3
- Typically 200- 400 iterations for forces to converge on medium grid

www.fluent.com

Convergence

Boeing Grid, M=0.76, Re=5.0x10⁶

Practically no difference between medium-fine and fine grids

- Monotonic decrease of drag with increasing grid resolution
- Very similar convergence behavior for W1 and W2
- Inconsistent grid refinement for W1 and W2?

- Very similar convergence behavior for W1 and W2
- Inconsistent grid refinement for W1 and W2?

	CL	CD	CD_SF	СМ
W1 coarse	0.4866	0.02168	0.00629	-0.07072
W1 medium	0.4864	0.02140	0.00630	-0.07006
W1 med-fine	0.4852	0.02101	0.00631	-0.06924
W1 fine	0.4857	0.02100	0.00631	-0.06938
W2 coarse	0.5081	0.02239	0.00625	-0.07088
W2 medium	0.5091	0.02196	0.00627	-0.07024
W2 med-fine	0.5077	0.02139	0.00628	-0.06913
W2 fine	0.5080	0.02135	0.00628	-0.06915

Grid Convergence, DPW-W1, α =0.5

Boeing Grid, M=0.76, Re=5.0x10⁶

www.fluent.com

Wall Distance

Boeing Grid, DPW-W1

- Non-uniform first grid spacing, for both W1 and W2
- Inconsistent wall distance refinement for grid family

Wall Distance, y+

Boeing Grid, DPW-W1, M=0.76, Re= 5.0×10^6 , α =0.5

Inconsistent wall distance refinement for grid family

Grid Convergence

Boeing Grid

DPW-W1

 Coarse and medium grids have same streamwise spacing at midchord

www.fluent.com

Turbulence Model

www.fluent.com

Surface Pressure, C_P

Boeing Grid, M=0.76, Re=5.0x10⁶, α =0.5

Surface Pressure, C_P

Boeing Grid, M=0.76, Re=5.0x10⁶, α =0.5

www.fluent.com

Lift Curve

Pitching Moment

Summary

- Consistent and robust solver convergence was obtained for all DPW-W1/W2 cases
- Blind study and unavailability of experimental data doesn't allow to comment on absolute accuracy
- Expected grid refinement trends are observed
 - Convergence behavior and mesh inspection indicates that grids are still not sufficiently consistent refined
- Generating consistently refined grids is still the bottleneck of this DPW series
- These DPWs are a welcome opportunity for Fluent to continuously refine our solver technology