Statistical Analysis of CFD Solutions from the 3rd AIAA Drag Prediction Workshop

J. H. Morrison
Computational AeroSciences Branch
M. J. Hemsch
Configuration Aerodynamics Branch
NASA Langley Research Center

3rd AIAA APA Drag Prediction Workshop
June 3-4, 2006
Outline of the talk

- Method for analyzing the collective

- Case 1 DLR-F6 and FX2B Fairing
 - Individual Solution Analysis
 - Grid Convergence Study
 - Comparison with DPW-2

- Case 2 Grid Convergence Study for DPW-W1

- Summary

- Concluding Remarks
Analysis Method

• Grid Convergence for nested solutions
 – Reduction in spread?
 – Reduction in scatter of “core” solutions?
 – Significant changes in medians?
 – Compare DPW-2 and DPW-3 spread and scatter
The median gives a robust estimate of the population mean.
Case 1: DLR-F6 Wing Body and DLR-F6 with FX2B Fairing
Case 1 Solution Statistics

<table>
<thead>
<tr>
<th></th>
<th>DPW-2</th>
<th></th>
<th>DPW-3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nested</td>
<td>Core</td>
<td>Nested</td>
<td>Core</td>
</tr>
<tr>
<td>Solutions</td>
<td>16</td>
<td>13</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Authors</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Institutions</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Codes</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
</tbody>
</table>
Solution Analysis

CD_TOT F6 Fine Grid

- Multiblock
- Overset
- Unstructured
- Median
- Limits
Solution Analysis (2) DPW-3

CD_PR

CD_SF
Solution Analysis (3)

ALPHA

CM_TOT
Solution Analysis (4) DPW-3

CD_TOT F6 Fine Grid

- Same Code
- Same Grid
- Different Turbulence Models

- Same Grid Nodes; Different Cells
- Same Turbulence Model
- Different Code
What does convergence look like?

Scatter in solutions is due to:
- Numerical error
- Modeling error (e.g. physics models, computational models)
- User errors
- Code errors

For grid convergence, numerical error asymptotically approaches zero leaving the other three contributors.

For the collective to show convergence, the following would have to happen:
- The ranges for the configurations would approach a constant as the grid “improved”.
- The scatter (standard deviation) of the “core” solutions would approach a constant as the grid improved.
- The medians of the core solutions would change asymptotically.
Grid Sizes

DPW-3

![Graph showing grid sizes for different categories C, M, and F with data points for DPW3 F6, DPW3 FX2B, and DPW2 WB.]
Nested CD_TOT

DPW-3

- **F6**
 - Graph showing CD_TOT vs. NPTS^{-2/3}
 - Various data points are plotted.

- **FX2B**
 - Graph showing CD_TOT vs. NPTS^{-2/3}
 - Various data points are plotted.
Nested CD_TOT minus Outliers
Convergence of CD_TOT

DPW-3

![Graph showing the convergence of CD_TOT with NPTS\(^{-2/3}\)]
Convergence CD_PR, CD_SF DPW-3

CD_PR

CD_SF

![Graphs showing convergence of CD_PR and CD_SF](image)
Convergence of ALPHA & CM_TOT

ALPHA

CM_TOT

- **DPW3 F6**
- **DPW3 FX2B**
- **DPW2 WB**
Convergence of Spread

CD_TOT

- DPW3 F6
- DPW3 FX2B
- DPW2 WB

C M F
Convergence of Spread (2) DPW-3

CD_PR

- DPW3 F6
- DPW3 FX2B
- DPW2 WB

CD_SF

- DPW3 F6
- DPW3 FX2B
- DPW2 WB
Convergence of Spread (3) DPW-3

ALPHA

- C
- M
- F

CM_TOT

- C
- M
- F

Legend:
- DPW3 F6
- DPW3 FX2B
- DPW2 WB
Convergence of Core Interval

CD_TOT

- DPW3 F6
- DPW3 FX2B
- DPW2 WB

C M F
Convergence of Core Interval (2) DPW-3
Convergence of Core Interval (3) \(\text{DPW-3} \)
Case 2: DPW-W1 Wing Alone

N.B. DPW-W2 has not been analyzed
Case 2 Solution Statistics

<table>
<thead>
<tr>
<th></th>
<th>DPW-W1 Wing Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nested</td>
</tr>
<tr>
<td>Solutions</td>
<td>7</td>
</tr>
<tr>
<td>Authors</td>
<td>6</td>
</tr>
<tr>
<td>Institutions</td>
<td>6</td>
</tr>
<tr>
<td>Codes</td>
<td>6</td>
</tr>
</tbody>
</table>
Convergence of CD_TOT, CL_TOT

CD_TOT

CL_TOT

NPTS^{-2/3}

NPTS^{-2/3}
Convergence of CM_TOT

![Graph of CM_TOT vs NPTS^{2/3}](image)
Spread of CD_TOT, CL_TOT

Spread of CD_TOT

Spread of CL_TOT
CD_TOT, CL_TOT Core Interval

CD_TOT Core Interval

CL_TOT Core Interval

NPTS$^{-2/3}$ vs. Value

NPTS$^{-2/3}$ vs. Value
Summary
Spread (of nested data) for Finest Grid

![Bar chart showing spread for nested data]

- **ALPHA**
- **CD_TOT**
- **CD_PR**
- **CD_SF**
- **CM_TOT**

Legend:
- DPW2 WB
- DPW3 F6
- DPW3 FX2B
- DPW3 W1
Core Interval for Finest Grid

DPW-3

![Bar chart showing data for different intervals and categories.](image-url)
Concluding Remarks

• The Good News:
 – **DPW-3** was a “blind test”, i.e. no experimental data existed to “guide” solutions. The results were about as good for the blind test as for **DPW-2**.
 – **DPW-W1** might be showing evidence that it is in the asymptotic range

• The Less Good News:
 – Have not demonstrated convergence of medians, spread or core interval for F6/FX2B despite increased grid sizes
 – F6 spread and core interval have not improved from **DPW-2**
 – FX2B spread and core interval are not substantially better than F6
 – **DPW-W1** spread and core interval are not showing convergence
 – After 3 drag prediction workshops, grids remain a leading order issue
Concluding Remarks (2)

Hemsch’s remarks from DPW-2 still apply:

- Regarding grid convergence for the collective:
 - There is no reduction in spread;
 - There is no reduction in core scatter;
 - The medians MAY be converging, although it can’t be proven with the present results.
Some Recommendations

- We must make a concerted effort to understand the differences in the codes and models

- We must make a concerted effort to understand the effects of grid quality and grid resolution

- We must analyze and improve our processes
Fini?
Grid Convergence – All Solutions

F6 Wing-Body w/wo FX2, MACH = 0.75
Re = 5 Million, Fixed CL=0.50

GRIDFAC = 1/(GRIDSIZE)^2/3