DPW-3

Statistical Analysis of CFD Solutions from the 3rd AIAA Drag Prediction Workshop

J. H. Morrison Computational AeroSciences Branch M. J. Hemsch Configuration Aerodynamics Branch NASA Langley Research Center

3rd AIAA APA Drag Prediction Workshop June 3-4, 2006

Outline of the talk

- Case 1 DLR-F6 and FX2B Fairing
 - Individual Solution Analysis
 - Grid Convergence Study
 - Comparison with DPW-2
- Case 2 Grid Convergence Study for DPW-W1
- Summary
- Concluding Remarks

Analysis Method DPW-3

- Grid Convergence for nested solutions
 - Reduction in spread?
 - Reduction in scatter of "core" solutions?
 - Significant changes in medians?
 - Compare DPW-2 and DPW-3 spread and scatter

Analysis Method (2) DPW-3

CD_TOT F6 Fine Grid

Case 1: DLR-F6 Wing Body and DLR-F6 with FX2B Fairing

Case 1 Solution Statistics DPW-3

	DPW-2		DPW-3	
	Nested	Core	Nested	Core
Solutions	16	13	16	14
Authors	15	12	12	11
Institutions	14	11	10	10
Codes	15	12	12	11

Solution Analysis

V-3

Solution Analysis (2) DPW-3

Solution Analysis (3) -3

Solution Analysis (4) DPW-3

CD_TOT F6 Fine Grid

What does convergence look like? DPW-3

- Scatter in solutions is due to:
 - Numerical error
 - Modeling error (e.g. physics models, computational models)
 - User errors
 - Code errors
- For grid convergence, numerical error asymptotically approaches zero leaving the other three contributors
- For the collective to show convergence, the following would have to happen:
 - The ranges for the configurations would approach a constant as the grid "improved".
 - The scatter (standard deviation) of the "core" solutions would approach a constant as the grid improved.
 - The medians of the core solutions would change asymptotically.

Nested CD_TOT

Nested CD_TOT minus Outliers DPW-3

Convergence of CD_TOT DPW-3

Convergence CD_PR, CD_SF DPW-3

16

Convergence of ALPHA & CM_TOT DPW-3

Convergence of Spread DPW-3

Convergence of Spread (2) DPW-3

Convergence of Spread (3) DPW-3

Convergence of Core Interval DPW-3

Convergence of Core Interval (2) DPW-3

Convergence of Core Interval (3) DPW-3

Case 2: DPW-W1 Wing Alone

N.B. DPW-W2 has not been analyzed

Case 2 Solution Statistics DPW-3

	DPW-W1 Wing Alone		
	Nested	Core	
Solutions	7	7	
Authors	6	6	
Institutions	6	6	
Codes	6	6	

W1 Nested CD_TOT

DPW-3

Convergence of CD_TOT, CL_TOT DPW-3

Convergence of CM_TOT DPW-3

Spread of CD_TOT, CL_TOT

0.0040 0.0600 0.0035 0.0500 0.0030 0.0400 0.0025 0.0300 0.0020 0.0015 0.0200 0.0010 0.0100 0.0005 0.0000 0.0000 0 2E-05 4E-05 6E-05 8E-05 0 2E-05 4E-05 6E-05 8E-05 NPTS^{-2/3} NPTS^{-2/3}

Spread of CD_TOT

Spread of CL_TOT

CD_TOT, CL_TOT Core Interval

CL_TOT Core Interval

Summary

Spread (of nested data) for Finest Grid DPW-3

Core Interval for Finest Grid DPW-3

Concluding Remarks

- The Good News:
 - DPW-3 was a "blind test", i.e. no experimental data existed to "guide" solutions. The results were about as good for the blind test as for DPW-2.
 - DPW-W1 might be showing evidence that it is in the asymptotic range
- The Less Good News:
 - Have not demonstrated convergence of medians, spread or core interval for F6/FX2B despite increased grid sizes
 - F6 spread and core interval have not improved from DPW-2
 - FX2B spread and core interval are not substantially better than F6
 - DPW-W1 spread and core interval are not showing convergence
 - After 3 drag prediction workshops, grids remain a leading order issue

Concluding Remarks (2)

Hemsch's remarks from DPW-2 still apply:

- Regarding grid convergence for the collective:
 - There is no reduction in spread;
 - There is no reduction in core scatter;
 - The medians MAY be converging, although it can't be proven with the present results.

Some Recommendations

- We must make a concerted effort to understand the differences in the codes and models
- We must make a concerted effort to understand the effects of grid quality and grid resolution
- We must analyze and improve our processes

Fini?

Grid Convergence – All Solutions

