CFS Engineering & RUAG Aerospace DPW4 Results

Jan B. Vos*, Stephan Sanchi*, Alain Gehri[¥], Philippe Stephani[¥]

*CFS Engineering PSE-A 1015 Lausanne Switzerland * RUAG Aerospace

J.B. Vos. June 18, 2009

6032 Emmen Switzerland

Contents

- Who we are
- The CFD Code we use
- DPW4 results using our own grid
- Comparison of results obtained with other grids
- Concluding Remarks

Who we are – RUAG Aerospace

Focused on aviation and space technology

USA

Europe

CFS Engineering

Who we are – RUAG Aerospace

Aircraft Services:

CFS Engineering

Business and executive jets, regional aircraft, helicopters,programs and special aircraft, technical logistic support

• Aircraft & Defence Systems: Fighter and training jets, helicopters, simulators, self-defence systems

Who we are – RUAG Aerospace

• **Space:** Equipment for satellites and launchers

• Aerostructures: Wing and fuselages sub-assemblies, engine cases

Engineering & Technology

RUAG

CFS Engineering

Who we are – RUAG Aerospace – Aerodynamics Center

- Wind Tunnel Tests **Aviation- and Automotive Industry**
- Instrumentation / Model D&M

 CFD & Flight Physics Engineering

J.B. Vos. June 18, 2009

Who we are – CFS Engineering

CFS Engineering was created in 1999 and is located at the Business park of the Swiss Federal Institute of Technology in Lausanne (EPFL)

The major shareholder of CFS Engineering is RUAG Aerospace

We offer services in the numerical simulation of fluid and structural mechanics engineering problems

CFS Engineering

Who we are – CFS Engineering – compressible flows

Aerodynamic analysis of the F/A-18 including dynamic Fluid Structure Interaction

RUAG Aerospace

Ground effect studies NEURON

J.B. Vos. June 18, 2009

Dassault Aviation

Who we are – CFS Engineering – hypersonic flows

EXPErimental Re-Entry Test bed

2.58e+06 3.81e+06 5.05e+06 6.29e+06 7.52e+06 1.

CFS Engineering

The CFD code we use - NSMB

NSMB was based on an Euler code (EULMB) developed at EPFL in 1989 with support from CERFACS and KTH. The first version of NSMB became available in November 1991.

A NSMB Memorandum of Understanding was signed in May 1992 between Aerospatiale, CERFACS, KTH and EPFL, and the NSMB project was born which had as objective to further develop the NSMB flow solver. Other parties joined the NSMB project, like SAAB Military Aircraft, SERAM, IMFT, CFS Engineering.

In 2003 Airbus-France and CERFACS moved away from NSMB to the ONERA code elsA and the NSMB project was officially terminated.

Since 2004 NSMB is further developed in a consortium led by CFS Engineering and composed of several Swiss, French and German Universities and industries.

Development activities are focused on turbulence, multi-physics including fluid structure interaction, hypersonic flow modeling, re-meshing, combustion, ..

CFS Engineering

The CFD code we use - NSMB

NSMB uses the cell centered Finite Volume method on multi block structured grids.

Various space discretisation schemes are available, among them 2nd and 4th order central schemes, and 2nd, 3rd and 5th order upwind schemes.

Time integration methods include the explicit Runge Kutta time stepping or the implicit LU-SGS scheme. Convergence acceleration methods as residual smoothing, multi grid or full multi grid are available.

NSMB includes a fully patched block connectivity boundary condition to simplify the mesh generation for complex geometries.

Different turbulence models have been implemented in NSMB, among them the Spalart-Allmaras 1 eq.model and the Wilcox and Menter Shear Stress $k-\omega$ models.

The code is fully parallel.

DPW4 calculations - grid

We generated our own grids using ICEM CFD Hexa since no base grid was available when we started our activities

H-type grid using the O-strategy around fuselage, wing and horizontal tail

1-to-1 correspondence between blocks

Possibility to use multi grid and/or grid sequencing

Mesh generation guide lines were followed

Coarse grid:3.8 Million pointsMedium grid:11.3 Million points (11.0 without tail)Fine grid:36.3 Million points

CFS Engineering

DPW4 calculations - grid

Picture of coarse grid and block topology in symmetry plane

CFS Engineering

DPW4 calculations – CFD parameter settings

All calculations were made using the following parameters

Space discretization: 4th order central scheme with artificial dissipationTime integration:LU-SGS, CFL increased from 0.1 to 1.e12Turbulence model:k-ω Menter Shear Stress

For the calculations on the CFSE grids we used 2 or 3 levels of grid sequencing. (Not used for the calculations comparing different grids).

Number of iterations: 2500 on the coarse grid, 3500 on the medium grid and 3000 on the fine grid (6000 for the calculations comparing different grids).

Calculation times on 10 cores: around 20 hours for the medium CFSE grid

No problems with the calculations.

Grid convergence study results

	α	CD	CL	СМу
coarse	2.4064	0.03548	0.5010	-0.06323
medium	2.3805	0.03087	0.5003	-0.05554
fine	2.4129	0.02978	0.4999	-0.03734

CP on Wing Section 4

CP on Wing Section 16

Results using our own grids – down wash study

DPW4/NASA CRM Effect of Stabilizer Angle on C_L

Results using our own grids – downwash study

DPW4/NASA CRM Effect of Stabilizer Angle on C_M

Since about 2 weeks, several other structured multi block grids became available on the DPW4 web site.

AIRBUS:cgns file, use of patch grid block connectivity bcANSYS:cgns file + meshing files (.tin + .blk)BOEING:plot3d file + info on bcsJAXA:plot3d file + info on bcsZEUS:cgns file

The cgns grid files could be easily imported, for the other formats conversion programs were written to get the boundary conditions correct.

AIRBUS moved the origin of the model BOEING changed the axis directions, this grid was after import divided in 30 blocks to permit parallel computations.

Computed case: HT0, α =2.5

Numerical parameters + boundary conditions all the same

Grid	#Mcells	#k surface cells	CL	CD	СМу
AIRBUS	12.6	126	0.51600	0.03002	-0.04948
ANSYS	10.8	73	0.52556	0.03112	-0.05009
BOEING	11.0	64	0.51392	0.02958	-0.04361
CFSE	11.3	80	0.51910	0.03189	-0.06145
JAXA	9.0	100	0.51743	0.02935	-0.03929
ZEUS	15.4	185	0.46118	0.02862	-0.00849

CFS Engineering

Comparison of results obtained using other grids AIRBUS Grid -1.10-0,76 -0,59 -0,43 -0.26-0,93 RUAG **CFS** Engineering J.B. Vos, June 18, 2009

Comparison of results obtained using other grids CFSE Grid -0,76 -0,59 -0,43 -0.26-1.10 -0.93 RUAG **CFS** Engineering J.B. Vos, June 18, 2009

Comparison of results obtained using other grids JAXA Grid -0,93 -1.10-0,76 -0,59 -0,43 -0.26RUAG **CFS** Engineering J.B. Vos, June 18, 2009

Comparison of results obtained using other grids ZEUS Grid -1.10-0,76 -0,59 -0,43 -0.26-0,93 RUAG **CFS** Engineering J.B. Vos, June 18, 2009

Comparison of results obtained using other grids BOEING Grid -1.10-0,76 -0,59 -0,43 -0.26 -0.09 -0.93 RUAG **CFS** Engineering

CP on Wing Section 8

CFS Engineering

CP on Wing Section 16

CFS Engineering

J.B. Vos, June 18, 2009

RUAG

Concluding Remarks

Calculations for the DPW4 test cases were successfully performed.

Grid convergence for the CL=0.5 case was not completely demonstrated.

Results of simulations using different grids showed a large sensitivity of the computed results on the grid used.

We learned many things!

Recommendations

Please use SI units!

Please ask contributors to keep axis orientations + origin locations

Please use the CGNS standard to exchange grids

If the objective of the Workshop is to compare different codes and/or turbulence models, please provide a mandatory grid (on time).

Thank you for your attention.

