$4^{\text {th }}$ AIAA CFD Drag Prediction Workshop

Computational Results using UPACS \& TAS

Kazuomi YAMAMOTO, Kentaro TANAKA, and Mitsuhiro MURAYAMA
Aviation Program Group (APG),
Japan Aerospace Exploration Agency (JAXA)

Objective and Outline

- Evaluation of CFD codes used in APG/JAXA through DPW.
- Multi-block structured mesh code, UPACS
- Unstructured mesh code, TAS
- Outline of Presentation
- Self-made computational grids
- Codes
- Case 1.1 Grid convergence study
- Case 1.2 Downwash study
- Case 2: Mach sweep
- Case 3: Reynolds number study
- Points of discussion
- Comparison of calculated aerodynamic force between two methods
- Large flow separation at wing-body corner

Grid information

CRM WING/BODY/TAIL ($\mathrm{i}_{\mathrm{H}}=0$)
Multi-Block Structured Grid (Gridgen)

	Cells	Surf. Faces	BL 1st-Cell Size [inch]	BL Growth Rate	TE Cells
Coarse	2.8 M	127 K	0.001478	1.31	14
Medium	9.0 M	276 K	0.000985	1.20	20
Fine	30.4 M	620 K	0.000657	1.13	30

Coarse \& Fine grids \leftarrow Based on interpolation of Medium grid
Multi-grid "unfriendly"
Hybrid unstructured Grid (MEGG3D)

	Nodes	Surf. Nodes	BL 1st-Cell Size [inch]	BL Growth Rate	TE Cells
Coarse	5.9 M	213 K	0.001478	1.31	$1-4$
Medium	13.5 M	370 K	0.000985	1.20	$2-5$
Fine	31.3 M	589 K	0.000657	1.13	$3-7$

\square Different from the grid guideline

Point-matched multi-block structured grids \quad HKA

- Near the model surface:
- O-O grid topology to guarantee better orthogonality within the boundary layer
- Outward:
- C-O grid topology

Wing-body juncture corner

Block wire frame for NASA CRM

Mixed-element, hybrid-unstructured grids

- Surface grid (Triangles)
- Direct advancing front method
- Use of triangles that are not so stretched
- Volume grid (Tetrahedra, Prisms, Pyramids)
- Delauney (tetra) \rightarrow insertion of prismatic layer (prism)

Wing-body
juncture corner

Numerical methods: UPACS \& TAS

	UPACS	TAS
Mesh type	Multi-block structured	Unstructured
Discretization	Cell-centered finite volume	Cell-vertex finite volume
Convection Flux	Roe 2nd-order with van Albada's Limitter	HLLEW 2nd-order with Venkatakrishnan's limitter
Time integration	Matrix-Free Gauss-Seidel	LU-Symmetric Gauss-Seidel
Turbulence model	Spalart-Allmaras model	Spalart-Allmaras model

- Modification to the S-A model
- without trip related terms
- with a modification of production term: $S=\min \left(\sqrt{2 \Omega^{2}}, \sqrt{2 S^{2}}\right)$
- Computer Platform: JSS - Fujitsu FX1 (SPARC64 VII 2.5GHz,3008cpu)
- UPACS: \# Processors: 32 (172cores)
- TAS: \# Processors: 43 (172cores)

Wake resolution

- $\mathrm{Re}=5 \mathrm{M}, \mathrm{CL}=0.5, \mathrm{i}_{\mathrm{H}}=0$, Fine grid

Total Pressure

Case 11: Grid Convergence at Mach $0.85, C_{L}=0.5$, $=1$

- Both methods obtained good convergence.
- Unstructured method shows higher $\mathrm{C}_{\mathrm{D} \text { _PR }}$ and more variation with grid size.
- $C_{\text {D_sF }}$ varies about 1 count.
- 2 to 3 counts difference at converged value?

Case 1.1: Grid Convergence at Mach $0.85, C_{L}=0.5$, \quad, A

- Pitching Moment

Case 1.1: Grid Convergence at Mach $0.85, C_{L}=0.5,4=1$

- Wing C_{p} at $\eta=0.5$

Case 1.1: Grid Convergence at Mach $0.85, c_{L}=0.5$ / $/$ KA

- Wing C_{P} at $\eta=0.95$

Case 1.1: Grid Convergence at Mach $0.85, C_{L}=0.5$,

- Tail Cp near root

UPACS

1.20
0.00
-1.20

13

Case 1.2: Trimmed Drag at Mach=0.85

- Difference in drag polar is consistent for $\mathrm{CL}<0.6$.
- Delta drag varies from 19 counts to 67 counts with alpha.
- Delta drag by two methods agree well up to CL=0.5.

Precise interpolation is necessary

C_{L} and C_{D}

HAEA

- $\mathrm{i}_{\mathrm{H}}=0, \mathrm{Re}=5 \mathrm{M}$, Medium grid

$C_{L}-C_{D}$

Effect of i_{H} on Pitching Moment

- Re=5M, Mach=0.85, Medium grid
- Very good agreement in the range alpha < 4deg
- Tail C_{M} by UPACS shows sudden change at alpha=4deg

Oilflow on wing upper surface

侾A

- UPACS shows large corner flow separation at 4deg.

Influence of the corner separation on tail

Total Pressure, alpha=4deg

Case 2: Mach sweep

- $\mathrm{M}<0.85$: Obtained by interpolation of fixed alpha computations
- $M>0.85$: specified C_{L} solutions when error (>0.5 cnts) is estimated
- Both method show the same characteristics of drag divergence
- Consistent difference through the Mach number range

Oilflow on Wing Upper Surface

Cp on wing upper surface

Case 3: Reynolds number study

	$\mathrm{Re}=5 \mathrm{M}$			$\mathrm{Re}=20 \mathrm{M}$			Diff.		
	C_{D}	C ${ }_{\text {D PR }}$	$\mathrm{C}_{\text {D SE }}$	C_{D}	C ${ }_{\text {D PR }}$	$\mathrm{C}_{\mathrm{D} \text { SE }}$	C	C ${ }_{\text {D PR }}$	$\mathrm{C}_{\mathrm{D} \text { SE }}$
UPACS	0.0273	0.0147	0.0126	0.0241	0.0136	0.0105	0.0032	0.0011	0.0021
TAS	0.0281	0.0156	0.0125	0.0249	0.0144	0.0105	0.0033	0.0012	0.0021
Diff.	-0.0008	-0.0009	0.0001	-0.0008	-0.0008	0.0000	-0.0001	-0.0001	0.0000

Summary

- Case1 (1) Grid convergence
- Both methods show good grid convergence.
-2 to 3 counts difference in the converged value?
- Unstructured method has 8 counts higher drag than structured method with Medium grid.
- This difference is consistent throughout the following studies except the case large flow separation is existing at wing root.
- Variation of skin friction drag is very small.
- Case 1 (2) Downwash study
- Lower than alpha=4deg. or $\mathrm{C}_{\mathrm{L}}=0.6$, difference of trimmed drag between two methods is very small.
- Structured method shows large flow separation at alpha=4 deg. This changes the pitching moment of tail.
- Beyond 4 deg., Unstructured method also shows the same characteristics
- Case 2 Mach sweep study
- Both method show the same characteristics of drag divergence.
- Start divergence around Mach=0.85 for $\mathrm{C}_{\mathrm{L}}=0.5$.
- Structured method shows large flow separation at wing root at $M=0.87, C_{L}=0.5$.
- Case 3
- Delta $C_{D_{-} P R}=11$ counts, Delta $C_{D_{-} S F}=21$ counts with both methods.

Questions?

