

4th AIAA CFD Drag Prediction Workshop

Kazuomi YAMAMOTO, Kentaro TANAKA, and Mitsuhiro MURAYAMA

Aviation Program Group (APG), Japan Aerospace Exploration Agency (JAXA)

Objective and Outline

- Evaluation of CFD codes used in APG/JAXA through DPW.
 - Multi-block structured mesh code, UPACS
 - Unstructured mesh code, TAS

Outline of Presentation

- Self-made computational grids
- Codes
- Case 1.1 Grid convergence study
- Case 1.2 Downwash study
- Case 2: Mach sweep
- Case 3: Reynolds number study
- Points of discussion
 - Comparison of calculated aerodynamic force between two methods
 - Large flow separation at wing-body corner

Grid information

CRM WING/BODY/TAIL ($i_H = 0$)

Multi-Block Structured Grid (Gridgen)

	Cells	Surf. Faces	BL 1st-Cell Size [inch]	BL Growth Rate	TE Cells
Coarse	2.8M	127K	0.001478	1.31	14
Medium	9.0M	276K	0.000985	1.20	20
Fine	30.4M	620K	0.000657	1.13	30

Coarse & Fine grids \leftarrow Based on interpolation of Medium grid

Multi-grid "unfriendly"

Hybrid unstructured Grid (MEGG3D)

	Nodes	Surf. Nodes	BL 1st-Cell Size [inch]	BL Growth Rate	TE Cells
Coarse	5.9M	213K	0.001478	1.31	1 - 4
Medium	13.5M	370K	0.000985	1.20	2 - 5
Fine	31.3M	589K	0.000657	1.13	3 - 7

Different from the grid guideline

Point-matched multi-block structured grids

Near the model surface:

- O-O grid topology to guarantee better orthogonality within the boundary layer
- Outward:
 - C-O grid topology

Wing-body juncture corner

Block wire frame for NASA CRM

Mixed-element, hybrid-unstructured grids

- Surface grid (Triangles)
 - Direct advancing front method
 - Use of triangles that are not so stretched
- Volume grid (Tetrahedra, Prisms, Pyramids)
 - Delauney (tetra) \rightarrow insertion of prismatic layer (prism)

Comparison of cross-sectional view at kink location

Numerical methods: UPACS & TAS

	UPACS	TAS			
Mesh type	Multi-block structured	Unstructured			
Discretization	Cell-centered finite volume	Cell-vertex finite volume			
Convection Flux	Roe 2nd-order with van Albada's Limitter	HLLEW 2nd-order with Venkatakrishnan's limitter			
Time integration	Matrix-Free Gauss-Seidel	LU-Symmetric Gauss-Seidel			
Turbulence model	Spalart-Allmaras model	Spalart-Allmaras model			

Modification to the S-A model

- without trip related terms
- with a modification of production term:

$$S = \min(\sqrt{2\Omega^2}, \sqrt{2S^2})$$

- Computer Platform: JSS Fujitsu FX1 (SPARC64 VII 2.5GHz,3008cpu)
 - UPACS: # Processors: 32 (172cores)
 - TAS: # Processors: 43 (172cores)

Wake resolution

Re=5M, CL=0.5, i_H=0, Fine grid

Case 1.1: Grid Convergence at Mach 0.85, C_L=0.5

- Both methods obtained good convergence.
- Unstructured method shows higher C_{D_PR} and more variation with grid size.
- C_{D_SF} varies about 1 count.
- 2 to 3 counts difference at converged value?

Case 1.1: Grid Convergence at Mach 0.85, C_L=0.5

Pitching Moment

10

Case 1.1: Grid Convergence at Mach 0.85, C_L=0.5

Case 1.1: Grid Convergence at Mach 0.85, C_L=0.5

Case 1.1: Grid Convergence at Mach 0.85, C_L=0.5

Case 1.2: Trimmed Drag at Mach=0.85

- Difference in drag polar is consistent for CL< 0.6.
- Delta drag varies from 19 counts to 67 counts with alpha.
- Delta drag by two methods agree well up to CL=0.5.

■ i_H=0, Re=5M, Medium grid

15

Effect of i_H on Pitching Moment

- Re=5M, Mach=0.85, Medium grid
- Very good agreement in the range alpha < 4deg</p>
- Tail C_M by UPACS shows sudden change at alpha=4deg

Oilflow on wing upper surface

Influence of the corner separation on tail

Total Pressure, alpha=4deg

Case 2: Mach sweep

- M < 0.85: Obtained by interpolation of fixed alpha computations</p>
- M > 0.85: specified C_L solutions when error (>0.5 cnts) is estimated
- Both method show the same characteristics of drag divergence
- Consistent difference through the Mach number range

Oilflow on Wing Upper Surface

Cp on wing upper surface

Case 3: Reynolds number study

	Re=5M		Re=20M			Diff.			
	C _D	C _{D PR}	C _{D SF}	C _D	C _{D PR}	C _{D SF}	C _D	C _{D PR}	C _{D SF}
UPACS	0.0273	0.0147	0.0126	0.0241	0.0136	0.0105	0.0032	0.0011	0.0021
TAS	0.0281	0.0156	0.0125	0.0249	0.0144	0.0105	0.0033	0.0012	0.0021
Diff.	-0.0008	-0.0009	0.0001	-0.0008	-0.0008	0.0000	-0.0001	-0.0001	0.0000

Summary

Case1 (1) Grid convergence

- Both methods show good grid convergence.
 - 2 to 3 counts difference in the converged value?
- Unstructured method has 8 counts higher drag than structured method with Medium grid.
- This difference is consistent throughout the following studies except the case large flow separation is existing at wing root.
- Variation of skin friction drag is very small.

Case 1 (2) Downwash study

- Lower than alpha=4deg. or C_L=0.6, difference of trimmed drag between two methods is very small.
- Structured method shows large flow separation at alpha=4 deg. This changes the pitching moment of tail.
- Beyond 4 deg., Unstructured method also shows the same characteristics

Case 2 Mach sweep study

- Both method show the same characteristics of drag divergence.
- Start divergence around Mach=0.85 for C_L=0.5.
- Structured method shows large flow separation at wing root at M=0.87, C_L=0.5.
- Case 3
 - Delta $C_{D_{PR}}$ =11 counts, Delta $C_{D_{SF}}$ =21 counts with both methods.

Questions?