

DLR TAU Results AIAA DPW-4

O. Brodersen, S. Crippa, B. Eisfeld, S. Keye, S. Geisbauer

Institute of Aerodynamics and Flow Technology DLR Germany

Content

- Objectives
- Grids
- TAU RANS Solver
- Case 1.1: Grid Refinement Study
- Case 1.2: Downwash Study
- Case 3: Reynolds Number Study
- Conclusions

Objectives — DLR Objectives in DPW-4 —

- Test DLR-TAU with new Solar grid generation approach (hex-dominant in boundary layer):
 - ✓ Refinement studies using Solar grids
- Compare to standard TAU Centaur medium grids results (prism-dominant in boundary layer)
- Application of SA, Menter kω-SST, and RSM turbulence models
- i_h trim interpolation vs.
 HTP setting modification
 in CFD loop (mesh deformation)

Content

- Objectives
- Grids
- TAU RANS Solver
- Case 1.1: Grid Refinement Study
- Case 1.2: Downwash Study
- Case 3: Reynolds Number Study
- Conclusions

Grids - Solar -

Solar grid generation system developed by ARA, BAE Systems, Airbus, QinetiQ:

- Anisotropic quad-dominant unstructured surface meshes
- ➤ Advancing layer near field mesher
- Buffer layer transitioning to triangulated near field shell
- → Tetrahedral far field meshing
- → Consistent grid family

	Coarse	Medium	Fine
Nodes	4074967	11696804	34076798
Hexa Layers	30	42	60

DLR AIAA DPW-4, 20th-21st June 2009

Grids — Centaur 8.1 —

Centaur grid generation system developed by CentaurSoft:

- ➤ Triangulated surface meshes
- Prismatic elements for boundary layer resolution

	Medium
Nodes	13331301
Prismatic Layers	35

Grids — Volume Grid —

- Medium grids 7
- Best practice for 7 Centaur grids
- ✓ Limited experience with Solar grids

in der Helmholtz-Gemeinschaft

DLR

Content

- Objectives
- Grids

TAU RANS Solver

- Case 1.1: Grid Refinement Study
- Case 1.2: Downwash Study
- Case 3: Reynolds Number Study
- Conclusions

TAU RANS Solver

— Overview —

- ✓ TAU solves Reynolds-averaged Navier-Stokes equations
- Finite Volume Method, node-centered, (cell-centered), dual grid technique
- Several discretization schemes, here:
 - → 2nd order central with Jameson-type dissipation
- ✓ Time integration: Runge-Kutta, Backward Euler
- ➤ Local time stepping, residual smoothing
- → Multigrid
- Several turbulence models, here:
 - ✓ Spalart-Allmaras original (SA, SAO)
 - Menter kω-SST (kω-SST)
 - Speziale-Sakar-Gatski/Launder-Reece-Rodi, SSG/LRR-ω, (RSM)

Content

- Objectives
- Grids
- TAU RANS Solver
- Case 1.1: Grid Refinement Study
- Case 1.2: Downwash Study
- Case 3: Reynolds Number Study
- Conclusions

Case 1.1 — Grid Type/Size, Turbulence Model —

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Case 1.1 — Grid Type/Size, Turbulence Model —

Case 1.1 — Grid Type/Size, SAO Model —

DLR AIAA DPW-4, 20th-21st June 2009

SAO, Centaur grid, medium

SAO, Centaur grid, coarse

Case 1.1 — Turbulence Model —

SAO, Centaur grid, medium

Menter k ω -SST, Centaur grid, medium

Case 1.1 — Grid Type/Size, Turbulence Model —

Content

- Objectives
- Grids
- TAU RANS Solver
- Case 1.1: Grid Refinement Study
- Case 1.2: Downwash Study
- Case 3: Reynolds Number Study
- Conclusions

Case 1.2 $-C_1$ - α , Polar, HTP Settings ---

DLR AIAA DPW-4, 20th-21st June 2009

in der Helmholtz-Gemeinschaft

in der Helmholtz-Gemeinschaft

Case 1.2 $-C_1$ - α , Polar, Turbulence Model, HTP Setting -

DLR AIAA DPW-4, 20th-21st June 2009

Case 1.2 — C_{Dp/f} Polar, Turbulence Model, HTP Setting —

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Case 1.2 — C_L - α , Polar, Trimmed, Turbulence Model, Grid Type —

Case 1.2 — Flow Features, α =4.0°, Grid Type —

Case 1.2 — Flow Features, α =4.0°, Turbulence Model —

Case 1.2 — Delta Drag, Turbulence Model —

trimmed configuration

Case 1.2 — HTP Setting Modification —

- ✓ Iterative modification of i_h during CFD calculations towards C_M=0, C_I=0.5
- Mesh deformation used based on radial basis functions
- Differences to interpolated data are small
- → Δi_h=0.0029°
- → Δα=0.000018°

Case 1.2 — HTP Setting Modification —

- ✓ Iterative modification of i_h during CFD calculations towards C_M=0, C_I=0.5
- Mesh deformation used based on radial basis functions
- Differences to interpolated data are small
- → Δi_h=0.0029°
- → Δα=0.000018°

Case 1.2 — HTP Setting Modification —

- ✓ Iterative modification of i_h during CFD calculations towards C_M=0, C_I=0.5
- Mesh deformation used based on radial basis functions
- Differences to interpolated data are small
- → Δi_h=0.0029°
- → Δα=0.000018°
- ✓ C_M for deformed grids nearly identical to C_M calculated for separately generated grids.

DLR AIAA DPW-4, 20th-21st June 2009

Content

- Objectives
- Grids
- TAU RANS Solver
- Case 1.1: Grid Refinement Study
- Case 1.2: Downwash Study
- Case 3: Reynolds Number Study
- Conclusions

Case 3 - Re Influence, Turbulence Model -

 $\Delta \alpha \approx 8-10\%, \Delta C_{D} \approx 12-13\%, \Delta C_{M} \approx 14-23\%$ г ^{0.030}д О -0.02 Alpha Solar SAO Alpha Solar kw-SST CD Solar SAO CD Solar kw-SST ర^{2.4} ີ ບິ ບິ s CDp Solar kw-SST CDp Solar SAO CM Solar SAO CDI Salar SAO CM Solar kw-SST CDf Solar kw-SST 0.025 2.3--0.03-2.2-0.020 2.1 -0.04 0.015 2.0-0.010 1.8--0.05 15 Re 20 5 10 25 15 Re 5 10 20 25 **Deutsches Zentrum** für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

DLR AIAA DPW-4, 20th-21st June 2009

Content

- Objectives
- Grids
- TAU RANS Solver
- Case 1.1: Grid Refinement Study
- Case 1.2: Downwash Study
- Case 3: Reynolds Number Study

Conclusions

Conclusions (Preliminary)

- Lessons Learned —
- Solar quad-dominant unstructured surface meshes and hex-BL-resolution technique produce very good hierarchy of grids with high quality.
- ✓ Better leading edge and shock resolution with less overall nodes achievable.
- ➤ Aerodynamic coefficients and deltas for medium Centaur/Solar grids are similar.
- → Grid refinement indicates a nearly linear behaviour for $1/N^{2/3}$.
- ✓ Wing fuselage separation is influenced by the grid type/size.
- ✓ Trailing edge separation size is mainly influenced by the turbulence model.
- ✓ Trimmed polars: the grid influence is less important than the turbulence model.
- → Iterative setting variation of HTP in CFD loop towards $C_M = 0$ for $C_L = 0.5$:
 - Very small differences of i_h and α for trimmed configuration compared to interpolation method based on results from separately generated grids.

