# Structured Overset Grids for the NASA Common Research Model (CRM) 

Anthony J. Sclafani, John C. Vassberg, Mark A. DeHaan<br>The Boeing Company<br>Huntington Beach, California, USA

$4^{\text {th }}$ AIAA Drag Prediction Workshop San Antonio, Texas
20-21 June 2009

## Gridding Guidelines

CFD Drag Prediction Workshop

Initial spacing normal to all viscous walls (RE = 5M based on $C_{R E F}=275.80$ "):

- Coarse:
$y^{+} \sim 1.0$
$\Delta y=0.001478$ in
- Medium: $\quad y^{+} \sim 2 / 3 \quad \Delta y=0.000985$ in
- Fine: $\quad y^{+} \sim 4 / 9 \quad \Delta y=0.000657$ in
- Extra-Fine: $\quad y^{+} \sim 8 / 27 \quad \Delta y=0.000438$ in

Total grid size to grow $\sim 3 X$ between each grid level for grid convergence cases

- For structured meshes, this growth is $\sim 1.5 \mathrm{X}$ in each coordinate direction

Growth rate of cell sizes in the viscous layer should be $<1.25$
Farfield located at $\sim 100 \mathrm{C}_{\text {REF }}$ 's for all grid levels

## For the Medium Baseline Grids:

- Chordwise spacing for wing and tail leading edge (LE) and trailing edge (TE) $\sim 0.1 \%$ local chord
- Wing and tail Spanwise spacing at root $\sim 0.1 \%$ local semispan
- Wing and tail Spanwise spacing at tip $\sim 0.1 \%$ local semispan
- Cell size near fuselage nose and after-body $\sim 2.0 \%$ CREF


## Wing and Tail Trailing Edge Base:

- Minimum of 8 cells across TE base for the coarse mesh
- Minimum of 12 cells across TE base for the medium mesh
- Minimum of 16 cells across TE base for the fine mesh
- Minimum of 24 cells across TE base for the extra-fine mesh

Be multi-grid friendly

Suggested Grid Size for the NASA CRM Wing-Body:

- Medium $=\sim 8 \mathrm{M}$ cells/nodes

Suggested Grid Sizes for the NASA CRM Wing-Body-Tail ( $\mathrm{i}_{\mathrm{H}}=0^{\circ}$ ):

- Coarse $=\sim 3.5 \mathrm{M}$ cells/nodes
- Medium $=\sim 10 \mathrm{M}$ cells/nodes
- Fine $=\sim 35 \mathrm{M}$ cells/nodes
- Extra-Fine $=\sim 100 \mathrm{M}$ cells/nodes


## Overset Grid Generation Process

First built the medium grid following established "best practices" for overset grid generation

- Chan, Gomez, Rogers, Buning, "Best Practices in Overset Grid Generation", AIAA 2002-3191
- Vassberg, DeHaan, Sclafani, "Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations", AIAA 2003-4124


## Medium Grid Generation Process

CAD $\rightarrow$ surfaces $\rightarrow$ volumes $\rightarrow$ grid connectivity $\rightarrow$ surface integration


ZONI3G/SURGRD
HYPGEN/LEGRID/BOXGR
PEGASUS5


Built coarse, fine and extra-fine grids using the medium volume grids

- Used an in-house program called P3D_REDIM
- Re-ran PEGASUS5 and MIXSUR


## Structured Overset Grid Information

## Structured Overset Grid Systems

> 11 zones for Wing-Body
> 17 zones for Wing-Body-Horizontal
Medium grid is typical for drag quality design studies
Wing-Body

| Grid | Points | $1 / \mathrm{N}^{2 / 3} \times 10^{5}$ | $1^{\text {st }}$ Cell Size | $\mathrm{y}^{+}$ | Constant <br> Cells | Growth <br> Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Medium | $12,267,995$ | 1.88 | .00079 in | .66 | 3 | 1.19 |

Wing-Body-Horizontal

| Grid | Points | $1 / \mathrm{N}^{2 / 3} \times 10^{5}$ | $1^{\text {st }}$ Cell Size | $\mathrm{y}^{+}$ | Constant <br> Cells | Growth <br> Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coarse | $7,221,233$ | 2.68 | .00104 in | .87 | 2 | 1.26 |
| Medium | $16,932,913$ | 1.52 | .00079 in | .66 | 3 | 1.19 |
| Fine | $56,531,489$ | 0.68 | .00052 in | .44 | 4 | 1.12 |
| Extra Fine | $189,413,153$ | 0.30 | .00035 in | .29 | 6 | 1.08 |

## Wing-Body-Horizontal Surface Abutting Grids

- 14 surface grids for the WBH configuration
- Coarse grid shown here



## Volume Grids - Coarse Grid Shown Here



## Box Grids at the Symmetry Plane



3 box grids

- body box
- wing box (not shown)
- outer box


## Body Grids

| grid | J | K | L | total |
| :--- | :--- | :--- | :--- | :--- |
| coarse | 217 | 73 | 49 | 776,209 |
| medium | $.75 \times \mathrm{m}$ | $.75 \times \mathrm{m}$ | $.75 \times \mathrm{m}$ | $.43 \times \mathrm{m}$ |
|  | $\mathbf{2 8 9}$ | $\mathbf{9 7}$ | $\mathbf{6 5}$ | $\mathbf{1 , 8 2 2 , 1 4 5}$ |
| fine | 433 | 145 | 97 | $6,090,145$ |
|  | $1.50 \times \mathrm{m}$ | $1.49 \times \mathrm{m}$ | $1.49 \times \mathrm{m}$ | $3.34 \times \mathrm{m}$ |
| extra-fine | 649 | 217 | 145 | $20,420,785$ |
|  | $1.50 \times \mathrm{ff}$ | $1.50 \times \mathrm{f}$ | 1.49 xf | $3.35 \times \mathrm{m}$ |



## Wing-Body Collar Grids

CFD Drag Prediction Workshop

| grid | J | K | L | total |
| :--- | :--- | :--- | :--- | :--- |
| coarse | 289 | 37 | 49 | 523,957 |
|  | $.75 \times \mathrm{m}$ | $.75 \times \mathrm{m}$ | $.75 \times \mathrm{m}$ | $.43 \times \mathrm{m}$ |
| medium | $\mathbf{3 8 5}$ | 49 | $\mathbf{6 5}$ | $\mathbf{1 , 2 2 6 , 2 2 5}$ |
| fine | 577 | 73 | 97 | $4,085,737$ |
|  | $1.50 \times \mathrm{m}$ | $1.49 \times \mathrm{m}$ | $1.49 \times \mathrm{m}$ | $3.33 \times \mathrm{m}$ |
|  | 865 | 109 | 145 | $13,671,325$ |
|  | $1.50 \times \mathrm{xf}$ | $1.49 \times \mathrm{f}$ | $1.49 \times \mathrm{f}$ | 3.35 mm |

Layout of Grid Blocks that Abut the Surface

## Wing Grids

CFD Drag Prediction Workshop

| grid | $J$ | K | L | total |
| :---: | :---: | :---: | :---: | :---: |
| coarse | 265 | 109 | 49 | 1,415,365 |
|  | . $75 \times \mathrm{m}$ | . $75 \times \mathrm{m}$ | . $75 \times \mathrm{m}$ | . $43 \times \mathrm{m}$ |
| medium | 353 | 145 | 65 | 3,327,025 |
| fine | 529 | 217 | 97 | 11,134,921 |
|  | 1.50 xm | 1.50 mm | 1.49 mm | $3.35 \times \mathrm{m}$ |
| extra-fine | 793 | 325 | 145 | 37,370,125 |
|  | $1.50 \times \mathrm{f}$ | 1.50 xf | 1.49 xf | $3.36 \times \mathrm{m}$ |

Layout of Grid Blocks


## Wing Trailing-Edge Cap Grids

CFD Drag Prediction Workshop

| grid | J | K | L | total |
| :--- | :--- | :--- | :--- | :--- |
| coarse | 73 | 37 | 37 | 99,937 |
|  | $.75 \times \mathrm{m}$ | $.75 \times \mathrm{m}$ | $.75 \times \mathrm{m}$ | $.43 \times \mathrm{m}$ |
| medium | 97 | 49 | $\mathbf{4 9}$ | $\mathbf{2 3 2 , 8 9 7}$ |
|  |  |  |  |  |
| fine | 145 | 73 | 73 | 772,705 |
|  | $1.49 \times \mathrm{m}$ | $1.49 \times \mathrm{m}$ | $1.49 \times \mathrm{m}$ | $3.32 \times \mathrm{m}$ |
| extra-fine | 217 | 109 | 109 | $2,578,177$ |
|  | 1.50 xf | $1.49 \times \mathrm{f}$ | $1.49 \times \mathrm{f}$ | $3.34 \times \mathrm{m}$ |

Layout of Grid Blocks


BTEAME

