

Structured Overset Grids for the NASA Common Research Model (CRM)

Anthony J. Sclafani, John C. Vassberg, Mark A. DeHaan The Boeing Company Huntington Beach, California, USA

> 4th AIAA Drag Prediction Workshop San Antonio, Texas 20-21 June 2009

Gridding Guidelines

Initial spacing normal to all viscous walls (RE = 5M based on C_{REF} =275.80"):

- Coarse: $y^+ \sim 1.0$ $\Delta y = 0.001478$ in
- Medium: $y^+ \sim 2/3$ $\Delta y = 0.000985$ in
- Fine: $y^+ \sim 4/9$ $\Delta y = 0.000657$ in
- Extra-Fine: $y^+ \sim 8/27$ $\Delta y = 0.000438$ in

Total grid size to grow ~3X between each grid level for grid convergence cases

• For structured meshes, this growth is ~1.5X in each coordinate direction

Growth rate of cell sizes in the viscous layer should be < 1.25

Farfield located at ~100 C_{REF}'s for all grid levels

For the Medium Baseline Grids:

- Chordwise spacing for wing and tail leading edge (LE) and trailing edge (TE) ~0.1% local chord
- Wing and tail Spanwise spacing at root ~0.1% local semispan
- Wing and tail Spanwise spacing at tip ~0.1% local semispan
- Cell size near fuselage nose and after-body ~2.0% CREF

Wing and Tail Trailing Edge Base:

- Minimum of 8 cells across TE base for the coarse mesh
- Minimum of 12 cells across TE base for the medium mesh
- Minimum of 16 cells across TE base for the fine mesh
- Minimum of 24 cells across TE base for the extra-fine mesh

Be multi-grid friendly

Suggested Grid Size for the NASA CRM Wing-Body:

• Medium = ~8M cells/nodes

Suggested Grid Sizes for the NASA CRM Wing-Body-Tail ($i_H = 0^\circ$):

- Coarse = ~3.5M cells/nodes
- Medium = ~10M cells/nodes
- Fine = ~35M cells/nodes
- Extra-Fine = ~100M cells/nodes

First built the medium grid following established "best practices" for overset grid generation

- Chan, Gomez, Rogers, Buning, "Best Practices in Overset Grid Generation", AIAA 2002-3191
- Vassberg, DeHaan, Sclafani, "Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations", AIAA 2003-4124

Medium Grid Generation Process

Built coarse, fine and extra-fine grids using the medium volume grids

- Used an in-house program called P3D_REDIM
- Re-ran PEGASUS5 and MIXSUR

Structured Overset Grid Systems

➤ 11 zones for Wing-Body

> 17 zones for Wing-Body-Horizontal

Medium grid is typical for drag quality design studies

Wing-Body

		1/N ^{2/3} x 10 ⁵		-	Constant	Growth
Grid	Points		1 st Cell Size	Ут	Cells	Rate
Medium	12,267,995	1.88	.00079 in	.66	3	1.19

Wing-Body-Horizontal

Grid	Points	1/N ^{2/3} x 10 ⁵	1 st Cell Size	y+	Constant Cells	Growth Rate
Coarse	7,221,233	2.68	.00104 in	.87	2	1.26
Medium	16,932,913	1.52	.00079 in	.66	3	1.19
Fine	56,531,489	0.68	.00052 in	.44	4	1.12
Extra Fine	189,413,153	0.30	.00035 in	.29	6	1.08

Wing-Body-Horizontal Surface Abutting Grids

CFD Drag Prediction Workshop

Volume Grids – Coarse Grid Shown Here

Box Grids at the Symmetry Plane

AIAA DPW-IV

San Antonio, TX

Body Grids

CFD Drag Prediction Workshop

CFD Drag Prediction Workshop

Wing-Body Collar Grids

CFD Drag Prediction Workshop

Wing Grids

CFD Drag Prediction Workshop

coarse

cells .75

medium

24 cells

fine

36 cells

1.5 x m

extra-fine

54 cells 1.5 x f

<u>}18</u>

x m

Wing Trailing-Edge Cap Grids

grid	J	к	L	total
coarse	73	37	37	99,937
	.75 x m	.75 x m	.75 x m	.43 x m
medium	97	49	49	232,897
fine	145	73	73	772,705
	1.49 x m	1.49 x m	1.49 x m	3.32 x m
extra-fine	217	109	109	2,578,177
	1.50 x f	1.49 x f	1.49 x f	3.34 x m

Layout of Grid Blocks that Abut the Surface

wing TE cap

AIAA DPW-IV

San Antonio, TX

June 2009