

4th CFD Drag Prediction Workshop San Antonio, Texas – June 2009

1

BCFD/AFLR Unstructured Grids: NASA Common Research Model for the 4th Drag Prediction Workshop

Mori Mani

Boeing Research & Technology Platform Performance Technology

4th CFD Drag Prediction Workshop

San Antonio, Texas – June 2009

4th CFD Drag Prediction Workshop

San Antonio, Texas – June 2009

© The Boeing Company 2009

4th CFD Drag Prediction Workshop

San Antonio, Texas – June 2009

Grid	Tail Setting	BL Cells (millions)	Total Cells (millions)
Coarse	0	3.88	6.18
Coarse-fine	0	4.54	7.11
Medium	0	16.94	21.56
Medium-fine	0	17.57	22.30
Fine	0	33.37	55.43
X-Fine	0	72.04	109.40
Medium	ih -2	16.88	21.48
Medium	ih +2	16.98	21.61
Medium	none	10.79	13.54
Fine	ih -2	33.52	55.73
Fine	ih +2	33.60	56.00
Fine	none	19.94	32.79
Fine (Re=20M)	0	36.08	58.52

• DPW guidelines adhered to for the CRM grids

• Grids designed for a cell-centered solver

 Coarse-fine and medium-fine grids have fuselage grid densities similar to that of the fine grid

- Also created a set of "best practice" grids which are available on the NASA ftp site
- These grids used a constant first cell height of 0.0001" regardless of grid size
- AFLR parameters closer to default values
 - Max growth ratio of 1.2 in boundary layer
- Due to limited computing resources, we were not able to solve on these grids. We feel they will show less sensitivity to viscous drag with the SST model.

4th CFD Drag Prediction Workshop

San Antonio, Texas – June 2009

© The Boeing Company 2009

Mani

4th CFD Drag Prediction Workshop

San Antonio, Texas – June 2009

4th CFD Drag Prediction Workshop

San Antonio, Texas – June 2009

4th CFD Drag Prediction Workshop

San Antonio, Texas – June 2009

• AFLR builds prisms off the viscous surfaces, then transitions to tetrahedra once the cell aspect ratio is approximately 1

SUMMARY

- Created a suite of unstructured mixed-element grids using MADCAP/AFLR
- Grids range in size from 6M to 100+M cells
- Need more participants to run on the AFLR grids to determine their applicability to solvers other than BCFD
- Using BCFD, linear grid convergence was obtained using these grids
- Need to solve on the Boeing "best practice" grids and compare to the grids generated using the DPW guidelines