

ONERA

THE FRENCH AEROSPACE LAB

return on innovation

www.onera.fr

4th Drag Prediction Workshop

ONERA results

S.Esquieu Aerospace Engineer, Civil Aircraft Unit, Applied Aerodynamics Department M. Gazaix Aerospace Engineer, Department of Aeroacoustic Numerical Simulations

June 20-21 2009, San Antonio, Texas

ONERA

THE FRENCH AEROSPACE LAB

retu/rn//o/n innovation

MB structured grids provided by Boeing (1/2)

CRM W/B/H – Coarse grid (4.9 million nodes)

Skin surface, symmetry plane and slice in the boundary layer on the coarse grid

MB structured grids provided by Boeing (2/2)

Boeing MB structured grids converted from **Plot3D to CGNS format**

Coarse grid	4.9 M nodes
Medium grid	11.2 M nodes
Medium-fine grid	26.0 M nodes
Fine grid	47.8 M nodes

Boundary layer refinement

elsA-structured code

elsA solver:

RANS computations

Cell-centered finite volume on structured multi-block meshes

Time integration : Backward-Euler scheme with LU-SSOR relaxation

Spatial discretization : centred Jameson scheme

Multigrid technique

Spalart-Allmaras turbulence model

CGNS input and output format

Sequential (NEC-SX8) Parallel mode (Bull Novascale)

Reference dimensions (m) and pitch axis – Tail sections

CRM Wing/Body/Horizontal Tail

Skin surface of CRM wing-body configuration

Case 1.1: Grid Convergence study

CRM wing/body/horizontal tail – Coarse , medium, medium-fine and fine grids

Influence of grid refinement on lift, drag and pitching-moment prediction

CRM wing/body/horizontal tail – Coarse, medium, medium-fine and fine grids

Influence of grid refinement on lift, drag and pitching-moment prediction

CRM Tail $(i_H - 0.0^\circ)$	a	CL	CD,	CD_{j}	CD_{nf}	Cmy
Coarse grid	2.35	0.5000	147.65	129.18	276.83	-0.0487
Medium grid	2.34	0.4999	145.99	128.58	274.57	-0.0471
Medium fine grid	2.35	0.5005	145.61	127.92	273.53	-0.0457
Fine grid	2.36	0.5004	145.60	127.65	273.25	-0.0444

CD Total within 3.5 drag counts through the grid convergence process CD Pressure: reduction of 2 drag counts with grid refinement

CD Friction: 1.5 drag counts variation with refinement

Pitching-moment is more sensitive than drag to the grid refinement

Variation from -0.0487 on the coarse grid to -0.0444 on the fine grid

Case 1.1: Flow separation study

CRM wing/body/horizontal tail - M=0.85 CL=0.50 Re/c=5 10⁶

No flow separation captured with the Spalart-Allmaras turbulence model on the medium (11.2 M nodes) nor on the medium fine grid (26.0 M nodes)

Small flow separation with the Spalart-Allmaras turbulence model on the fine grid (47.8 M nodes)

Case 1.2: Downwash study

Lift polar and pitching-moment predictions

ONERA

THE FRENCH ADDRAGE LAB

Case 1.2: Downwash study

Total lift, lift of the different part of the airplane and pitching-moment

For i_{H} =+2.0° the positive tail lift can not balance the wing rotation

 i_{H} =-2.0° and i_{H} =0.0° empennage settings lead to negative tail lift \Rightarrow right direction to trim the aircraft

Case1.2: Downwash study

Downwash effect: deviation of the streamlines on the horizontal tail

7

Case1.2: Downwash study

iH=0.0° and iH=-2.0° efficient tail incidences to counter-rotate the wing rotation → logical penalty on lift-to-drag ratio v.s tail-off

ONERA results, Drag Prediction Workshop 4, 20-21 june 2009 – San Antonio, Texas

Case1.2: Downwash study

Pressure and friction drag – Drag on aircraft components

Case1.2: Downwash study (Far-Field Drag analysis)

Tail influence on viscous pressure drag component

Viscous drag values for the 4 different configurations

Viscous drag (in grey) and wave drag (in red) integration volumes form the far-field drag tool

More the tail incidence is negative more the penalty on the viscous pressure drag component is important especially for low angle of attack. This effect is limited for CL=0.5

ONERA

INT PRINCE ADDRESS OF LA

Case1.2: Downwash study (Far-Field Drag analysis)

Tail influence on wave drag component

Wave drag values for the 4 different configurations

Wave drag is produced on the tail for iH=-2.0° at low angles of attack and may appear on the trimmed configuration

Conclusion

Case1.1: Grid convergence study

- Total drag:
 - Variation: 3.5 drag counts between coarse and fine
- Pitching moment:
 - Large variation from -0.0487 to -0.0444 from coarse to fine → precision evaluation on pitching moment: 0.001?

Case1.2: Downwash study

- CFD provides a powerful solution for trim drag evaluation
 - · Good precision level of the calculations in cruise conditions
 - Relative comparisons between configurations with same grid refinement levels give a confident evaluation of drag and pitching-moment increment and effects

ONERA results, Drag Prediction Workshop 4, 20-21 june 2009 – San Antonio, Texas

