Drag Prediction for the CRM model using the Edge solver

by

Peter Eliasson, Shia-Hui Peng, Lars Tysell

FOI, Swedish Defence Research Agency

Overview

- Calculations with Edge solver
 - Hybrid unstructured grids
- Two families of grids computed
 - Provided by DLR, results delivered to DPW
 - In-house grids generated, not delivered yet
 - Grid generation delayed, results only just finalized
- Mandatory Case1
 - Grid convergence study
 - Downwash study

Selected grids

- Two families of unstructured grids used, from DLR and FOI
- DLR grids generated with SOLAR grid generator

DLR grids, tail 0	Coarse	Medium	Fine
# nodes	4.1×10^{6}	11.7×10^{6}	34.1×10^{6}
# boundary nodes	108×10^{3}	226×10^{3}	470×10^{3}
# hexahedral elements	3.1×10^{6}	9.2×10^{6}	72.7×10^{6}
# prisms	1.8×10^{3}	3.4×10^{3}	3.4×10^{3}
# tetrahedral elements	5.3×10^{6}	14.3×10^{6}	38.6×10 ⁶

FOI grid generated with in-house grid generator Tritet

FOI grids, tail 0	Coarse	Medium	Fine
# nodes	3.2×10^{6}	10.1×10^{6}	32.1×10^{6}
# boundary nodes	153×10^{3}	336×10^{3}	734×10^{3}
# hexahedral elements	0	0	0
# prisms	5.5×10^{6}	18.3×10^{6}	59.1×10^{6}
# tetrahedral elements	1.7×10^{6}	4.1×10^{6}	10.9×10^{6}

Grid pictures

Grid pictures, WB junction

Grid pictures, nose

Grid pictures, wing tip

Grid pictures, tail

Edge solver

Computational information

Computational settings

- Hellsten k-ω EARSM for the turbulence (AIAA Journal, Vol. 43, 2005)
 - Grid convergence calculations with k-ω SST
- 3-4 level W-cycles, full multigrid
 - Semi coarsening, 1:4
- 3-stage Runge-Kutta scheme, CFL=1.25
- Central scheme with artificial dissipation for mean flow and turbulence
- Full NS, compact discretization of normal derivatives
- Linux cluster used, up to 64 processors
 - Computing time ~ (64*) 6 hours for finest grids (~33 M nodes)

New since previous workshop

- Line-implicit time integration
- Weak boundary conditions on all variables including no-slip velocity
 - AIAA 2009-3551, presented on Monday June 22, 9.30
- Central discretization of turbulent equations

Steady state convergence

- Convergence (density res. and lift) on DLR medium grid, tail 0, C_L=0.5
- 3 levels full multigrid W cycles
- Convergence $|\Delta C_L < 0.1\%|$ requires:
 - ≤ 600 fine grid iterations line implicit
 - \leq 2000 fine grid iterations explicit
 - Specified C_L requires some extra iterations

- Comparison between DLR and FOI grids
- Excellent grid convergence with DLR grids
 - Acceptable with FOI grids
- Grid converged drag: DLR grids C_D=278.3, FOI grids C_D=280.3

Grid convergence, $C_L=0.5$

Comparison between EARSM and k-ω SST, DLR grids

- Good grid convergence, slightly worse grid convergence with SST
- Converged drag: EARSM C_D =278.3, SST C_D =271.6

	EARSM	k-ω SST
DLR grids	0.18×10 ⁻⁴	0.93×10 ⁻⁴
FOI grids	5.0×10 ⁻⁴	-

- Measure of Merit, as defined in DPW3
 - Measures the linearity of the slope of drag grid convergence
 - Based on Richardson extrapolation from coarse-medium and medium-fine grids
 - Low value = good value

Skin friction, tail 0° , C_L=0.5

- DLR grid, EARSM
- Attached flow on wing and tail
- Separation on fuselage behind and below tail

DPW4/NASA CRM Effect of Stabilizer Angle on CL

DLR grids, EARSM

Polars, C_D

DLR grids, EARSM

• $\Delta C_D = 26$ cts at $C_L = 0.5$ (trimmed vs. tail off)

DLR grids, EARSM

C_{P} on wing, tail 0°

- 4 span wise cuts
- DLR grids, EARSM, 5 angles of attack
- Attached flow although small area with C_{fx} <0 at about 40% span

$C_{\rm P}$ on tail, tail 0°

- 4 span wise cuts
- DLR grids, EARSM, 5 angles of attack
- Attached flow

Summary

Grid convergence

- Very good results with DLR grids
- Acceptable with FOI grid, 2 cts difference
- k- ω SST gives slightly lower drag than EARSM , 7 cts difference
- $\Delta C_{M} = 1.9 \times 10^{-3}$ DLR-FOI grids, $\Delta C_{M} = 1.0 \times 10^{-3}$ EARSM SST
- Attached flow on wing and tail, fuselage separation behind/below tail

Downwash study

- Linear lift increase up to about α =3°
- Tendency to separate at highest α =4°

