Drag Prediction for the CRM model using the Edge solver

by

Peter Eliasson, Shia-Hui Peng, Lars Tysell

FOI, Swedish Defence Research Agency
Overview

- Calculations with Edge solver
 - Hybrid unstructured grids

- Two families of grids computed
 - Provided by DLR, results delivered to DPW
 - In-house grids generated, not delivered yet
 Grid generation delayed, results only just finalized

- Mandatory Case1
 - Grid convergence study
 - Downwash study
Selected grids

- Two families of unstructured grids used, from DLR and FOI
- DLR grids generated with SOLAR grid generator

<table>
<thead>
<tr>
<th>DLR grids, tail 0</th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td># nodes</td>
<td>4.1×10^6</td>
<td>11.7×10^6</td>
<td>34.1×10^6</td>
</tr>
<tr>
<td># boundary nodes</td>
<td>108×10^3</td>
<td>226×10^3</td>
<td>470×10^3</td>
</tr>
<tr>
<td># hexahedral elements</td>
<td>3.1×10^6</td>
<td>9.2×10^6</td>
<td>72.7×10^6</td>
</tr>
<tr>
<td># prisms</td>
<td>1.8×10^3</td>
<td>3.4×10^3</td>
<td>3.4×10^3</td>
</tr>
<tr>
<td># tetrahedral elements</td>
<td>5.3×10^6</td>
<td>14.3×10^6</td>
<td>38.6×10^6</td>
</tr>
</tbody>
</table>

- FOI grid generated with in-house grid generator Tritet

<table>
<thead>
<tr>
<th>FOI grids, tail 0</th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td># nodes</td>
<td>3.2×10^6</td>
<td>10.1×10^6</td>
<td>32.1×10^6</td>
</tr>
<tr>
<td># boundary nodes</td>
<td>153×10^3</td>
<td>336×10^3</td>
<td>734×10^3</td>
</tr>
<tr>
<td># hexahedral elements</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td># prisms</td>
<td>5.5×10^6</td>
<td>18.3×10^6</td>
<td>59.1×10^6</td>
</tr>
<tr>
<td># tetrahedral elements</td>
<td>1.7×10^6</td>
<td>4.1×10^6</td>
<td>10.9×10^6</td>
</tr>
</tbody>
</table>
Grid pictures

- DLR medium grid, tail 0
- FOI medium grid, tail 0
Grid pictures, WB junction

DLR grids, tail 0

FOI grids, tail 0
Grid pictures, nose

DLR grids, tail 0

FOI grids, tail 0
Grid pictures, wing tip

DLR grids, tail 0

FOI grids, tail 0
Grid pictures, tail

DLR grids, tail 0

FOI grids, tail 0
Edge solver

Edge – a Navier-Stokes solver for unstructured grids
- Solves the compressible NS equations
- RANS/RANS-LES/LES solver
- Node-centered/ finite-volume formulation
- Edge based formulation with median dual grids
- Runge-Kutta time integration
- Agglomeration multigrid
- Parallel with MPI
- Dual time stepping for unsteady extension
- High temperature extension
- Low speed preconditioning
- Aeroelastic capability
- Grid adaptation
- Adjoint solver for shape optimization
Computational information

Computational settings

- Hellsten k-ω EARSM for the turbulence (AIAA Journal, Vol. 43, 2005)
 - Grid convergence calculations with k-ω SST
- 3-4 level W-cycles, full multigrid
 - Semi coarsening, 1:4
- 3-stage Runge-Kutta scheme, CFL=1.25
- Central scheme with artificial dissipation for mean flow and turbulence
- Full NS, compact discretization of normal derivatives
- Linux cluster used, up to 64 processors
 - Computing time ~ (64*) 6 hours for finest grids (~33 M nodes)

New since previous workshop

- Line-implicit time integration
- Weak boundary conditions on all variables including no-slip velocity
 - AIAA 2009-3551, presented on Monday June 22, 9.30
- Central discretization of turbulent equations
Steady state convergence

- Convergence (density res. and lift) on DLR medium grid, tail 0, $C_L=0.5$
- 3 levels full multigrid W cycles
- Convergence $|\Delta C_L| < 0.1\%$ requires:
 - ≤ 600 fine grid iterations line implicit
 - ≤ 2000 fine grid iterations explicit
 - Specified C_L requires some extra iterations
Grid convergence, $C_L=0.5$

- Comparison between DLR and FOI grids
- Excellent grid convergence with DLR grids
 - Acceptable with FOI grids
- Grid converged drag: DLR grids $C_D=278.3$, FOI grids $C_D=280.3$
Comparison between EARSM and k-ω SST, DLR grids
Good grid convergence, slightly worse grid convergence with SST
Converged drag: EARSM $C_D=278.3$, SST $C_D=271.6$
Grid convergence, $C_L=0.5$

<table>
<thead>
<tr>
<th></th>
<th>EARSM</th>
<th>$k-\omega$ SST</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR grids</td>
<td>0.18×10^{-4}</td>
<td>0.93×10^{-4}</td>
</tr>
<tr>
<td>FOI grids</td>
<td>5.0×10^{-4}</td>
<td>-</td>
</tr>
</tbody>
</table>

- Measure of Merit, as defined in DPW3
 - Measures the linearity of the slope of drag grid convergence
 - Based on Richardson extrapolation from coarse-medium and medium-fine grids
 - Low value = good value
Skin friction, tail 0°, $C_L=0.5$

- DLR grid, EARSM
- Attached flow on wing and tail
- Separation on fuselage behind and below tail
Polars, C_L

DPW4/NASA CRM Effect of Stabilizer Angle on C_L

- Tail $ih = -2$
- Tail $ih = 0$
- Tail $ih = +2$
- Tail Off
- Trimmed

DLR grids, EARSM

FOI
Polars, C_D

- DLR grids, EARSM
- $\Delta C_D = 26$ cts at $C_L = 0.5$ (trimmed vs. tail off)
Polars, C_M

DPW4/NASA CRM Effect of Stabilizer Angle on C_M

- Tail $\phi = -2$
- Tail $\phi = 0$
- Tail $\phi = +2$
- Tail Off

- DLR grids, EARSM
C\textsubscript{p} on wing, tail 0°

- 4 span wise cuts
- DLR grids, EARSM, 5 angles of attack
- Attached flow although small area with C\textsubscript{fx}<0 at about 40% span
C_p on tail, tail 0°

- 4 span wise cuts
- DLR grids, EARSM, 5 angles of attack
- Attached flow
Summary

- **Grid convergence**
 - Very good results with DLR grids
 - Acceptable with FOI grid, 2 cts difference
 - k-ω SST gives slightly lower drag than EARSM, 7 cts difference
 - $\Delta C_M = 1.9 \times 10^{-3}$ DLR-FOI grids, $\Delta C_M = 1.0 \times 10^{-3}$ EARSM - SST
 - Attached flow on wing and tail, fuselage separation behind/below tail

- **Downwash study**
 - Linear lift increase up to about $\alpha = 3^\circ$
 - Tendency to separate at highest $\alpha = 4^\circ$