AIAA 4th Drag Prediction Workshop June 20-21, 2009, San Antonio, TX

U. Goldberg, O. Peroomian, V. Akdag, V. Gupta, S. Chakravarthy Metacomp Technologies, Inc.,

and R. Ranjan, A. Singh, A. Khare, K. Nikam **Computational Research Laboratories, Ltd., Pune, India**

CORRESPONDING PARTICIPANT'S INFORMATION

Name: Dr. Uriel Goldberg Email: ucg@metacomptech.com Phone: (818)735-4880 ext. 225 Address: Metacomp Technologies, Inc. Address: 28632B Roadside Drive # 255 Address: Agoura Hills Address: CA 91301-6071

Contents

- Solver information
- Computed cases
- Grid information
- Solution platforms
- Sample of results
- Summary

SOLVER INFORMATION

- METHOD NAME: CFD++ Software Suite.
- BASIC ALGORITHM: finite volume unstructured mixed-element cell-based.
- TURBULENCE MODELS: (1) wall-distance-free realizable k- ϵ (incl. time-scale realizability), (2) S-A.
- Tu=2.0%, μ_t/μ=3.0.
- RESIDUALS: Based on absolute value sum over all cells, divided by the number of cells. Residuals are available for all equations separately.

TEST CASES (NASA CRM configuration, free air, fully turbulent)

(1.1) Grid convergence study at M=0.85, C_L =0.500±0.001

- Tail incidence angle=0
- Coarse, medium, fine, extra-fine grids
- $\text{Re}_c=5\times10^6$ based on $c_{\text{REF}}=275.80''$
- T_{REF}=100° F
- (1.2) Downwash study at M=0.85
- Use Medium grid
- Drag polars at α =0.0, 1.0, 1.5, 2.0, 2.5, 3.0 and 4.0°
- Tail incidence angles: -2.0, 0.0 and +2.0°
- No tail
- Trimmed drag polar derived from polars at -2.0, 0.0 and +2.0°
- Δ drag polar of tail on vs. tail off
- Re_c=5×10⁶ based on c_{REF} =275.80"
- $T_{REF} = 100^{\circ} F$
- Moment ref. center: X_{REF}=1325.90", Z_{REF}=177.95"
- (2.0) Mach sweep: M=0.70, 0.75, 0.80, 0.83, 0.85, 0.86, 0.87
- Medium grid
- WBH iH=0
- C₁=0.400, 0.450, 0.500

Grid sizes (1/2 model)

Config.	Coarsest	Coarse	Medium	Fine	Extra Fine
WB			17.0 M		
WBH	11.5 M	16.6 M	22.7 M	28.6 M	33.9 M

Grid information

- GRID-GENERATOR NAME: MIME (Multi-purpose Intelligent Meshing Environment).
- GRID TYPE: Mixed elements. Prism layers are grown from all surfaces of the aircraft, transitioning to tetrahedral elements within the volume. In the transition zone both hexahedral and pyramid elements can appear.
- BL 1st cell size: 5.08X10⁻⁵ m (y⁺ < 1)
- BL max. growth rate: 1.235

SOLUTION INFORMATION

Two computing platforms were used: (1) for preliminary calculations and C_L -driver-based grid sensitivity assessment (Task 1.1) and (2) for preparation of polars and Mach sweep data (Tasks 1.2 & 2.0).

Platform 1

- COMPUTER PLATFORM: cluster of Linux-based machines. Each machine has 2 dual-core AMD Opteron processors.
- INTERCONNECTION: infiniband-based.
- NO. OF PROCESSORS: 8 machines (32 CPUs).
- OPERATING SYSTEM: Kernel 2.6.9 (SMP) of Linux from Red Hat.
- COMPILER: GNU C-compiler.
- RUN TIME WALL-CLOCK: about 8 hours for 400 iterations (22.7M cells).
- MEMORY REQUIREMENTS: 79 GB (22.7M cells)

Platform 2

- COMPUTER PLATFORM: Cluster of 1800 compute nodes, each containing dual Intel Xeon quad Core E5365, 3.0 GHz processors,. 16 GB memory and 72 GB Hard disk.
- INTERCONNECTION: 4X DDR Infiniband, Bandwidth of 20 Gbps bidirectional.
- NO. OF PROCESSORS: 14400 Cores (7200 CPUs).
- OPERATING SYSTEM: XC-3.2.1 with latest updates
- COMPILER: GNU C-compiler.
- <u>EKA Details</u>: The system has a peak compute capacity of 180 teraflops and has achieved sustained compute capacity of 132.8 teraflops for the LINPACK benchmark.

• Sample results (1)

• Sample results (2)

• Sample results (3)

• Sample results (4)

• Sample results (5)

• Sample results (6)

• Sample results (7)

• <u>Sample results (8)</u>

Wing/fuselage separation bubble

• <u>Sample results (9)</u>: Typical WBH forces convergence

LIBRAILONX

<u>Sample results (10)</u>: C_p profiles (S-A & k-ε)

<u>Sample results (11)</u>: C_p profiles (S-A & k-ε)

• <u>Sample results (12)</u>: Grid convergence study (1.1)

• <u>Sample results (13)</u>: Grid convergence study (1.1)

• <u>Sample results (14)</u>: Polar plots (1.2)

• <u>Sample results (15)</u>: Polar plots (1.2)

• <u>Sample results (16)</u>: Polar plots (1.2)

• Sample results (17): Mach sweep (2.0)

- MIME used to generate 5 hierarchical grids
- CFD++ used to compute Cases 1.1, 1.2, 2.0
- Most solutions generated by CRL India
- Results presented with S-A and k-ε models:
 - Grid convergence same except for coarsest mesh
 - Wing/fuselage & wing TE separations predicted by both models on all grids
 - Trimmed polars by the 2 models are very close
 - At $\alpha > 3^{\circ} (C_{Di})_{k-\epsilon} > (C_{Di})_{S-A}$