DPW 5 Summary of Participant Data

Ed Tinoco,
David Levy,
Olaf Brodersen,
and the DPW Organizing Committee

24 June 2012
Outline:

• Participant Data
• Case 1: Grid Convergence
• Case 2: Buffet Study
• Pressure Data
• Side of Body Separation
• Trailing Edge Separation
• Conclusions
Participant Data:

- 54 Data Total Data Submittals
- 22 Teams/Organizations
 - 10 N. America, 5 Europe, 6 Asia, 1 S. America
 - 8 Government, 5 Industry, 6 Academia, 2 Commercial, 1 Unknown
 - 1 for Case 3 only
- Grid Types:
 - 5 Overset (4 Teams)
 - 7 Structured Multi-block (5 Teams)
 - 25 Unstructured (13 teams)
 (14 Hex, 7 Hybrid, 4 Prism)
 - 16 Custom (all types)
- Turbulence Models:
 - 34 SA (all types), 12 SST, 4 k-e-RT, 1 EARSM, 1 Lag-RST
<table>
<thead>
<tr>
<th>Team</th>
<th>ID</th>
<th>Name</th>
<th>Organization</th>
<th>File Name</th>
<th>Code</th>
<th>Misc Solver</th>
<th>Grid Type</th>
<th>Turbulence Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>Scafani</td>
<td>Boeing (Huntington)</td>
<td>ScafaniIT-CommonOverset-SAia-1</td>
<td>OVERFLOW v2.2c</td>
<td>Central</td>
<td>Overset</td>
<td>SA-ia</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>Scafani</td>
<td>Boeing (Huntington)</td>
<td>ScafaniIT-CommonOverset-SARC-1</td>
<td>OVERFLOW v2.2c</td>
<td>Central</td>
<td>Overset</td>
<td>SA-ia w/ RC</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>Scafani</td>
<td>Boeing (Huntington)</td>
<td>ScafaniIT-CustomOverset-SAia-1</td>
<td>OVERFLOW v2.2c</td>
<td>Central</td>
<td>Custom (Overset)</td>
<td>SA-ia</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>Scafani</td>
<td>Boeing (Huntington)</td>
<td>ScafaniIT-CustomOverset-SARC-1</td>
<td>OVERFLOW v2.2c</td>
<td>Central</td>
<td>Custom (Overset)</td>
<td>SA-ia w/ RC</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>Scafani</td>
<td>Boeing (Huntington)</td>
<td>ScafaniIT-CustomOverset-SARC-2</td>
<td>OVERFLOW v2.2c</td>
<td>Central</td>
<td>Custom (Overset)</td>
<td>SA-ia w/ RC</td>
<td></td>
</tr>
<tr>
<td>1 F</td>
<td>Scafani</td>
<td>Boeing (Huntington)</td>
<td>ScafaniIT-CustomOverset-SARC-3</td>
<td>OVERFLOW v2.2c</td>
<td>Central</td>
<td>Custom (Overset)</td>
<td>SA-ia w/ RC</td>
<td></td>
</tr>
<tr>
<td>1 G</td>
<td>Scafani</td>
<td>Boeing (Huntington)</td>
<td>ScafaniIT-CustomOverset-SARC-4</td>
<td>OVERFLOW v2.2c</td>
<td>Central</td>
<td>Custom (Overset)</td>
<td>SA-ia w/ RC</td>
<td></td>
</tr>
<tr>
<td>2 I</td>
<td>Chen</td>
<td>Milanyang City, China</td>
<td>Chen-CommonHex-SA-1</td>
<td>MFlow</td>
<td>Upwind</td>
<td>Hex</td>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>2 J</td>
<td>Chen</td>
<td>Milanyang City, China</td>
<td>Chen-CommonHex-SA-1</td>
<td>MFlow</td>
<td>Upwind</td>
<td>Hybrid</td>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>3 L</td>
<td>Gari&epy</td>
<td>EcolePolytechMontreal</td>
<td>Gari&epyM-CommonSA-1</td>
<td>Fluent V13</td>
<td>Upwind</td>
<td>Custom (Hex)</td>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>4 M</td>
<td>Scalabrini</td>
<td>Embraer</td>
<td>ScalabriniL-CommonHex-RT-1</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Hex</td>
<td>k-e-RT</td>
<td></td>
</tr>
<tr>
<td>4 N</td>
<td>Scalabrini</td>
<td>Embraer</td>
<td>ScalabriniL-CommonHex-SST-1</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Hex</td>
<td>SST</td>
<td></td>
</tr>
<tr>
<td>4 O</td>
<td>Scalabrini</td>
<td>Embraer</td>
<td>ScalabriniL-CommonHybrid-RT-1</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Hybrid</td>
<td>k-e-RT</td>
<td></td>
</tr>
<tr>
<td>4 P</td>
<td>Scalabrini</td>
<td>Embraer</td>
<td>ScalabriniL-CommonHybrid-SST-1</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Hybrid</td>
<td>SST</td>
<td></td>
</tr>
<tr>
<td>4 Q</td>
<td>Scalabrini</td>
<td>Embraer</td>
<td>ScalabriniL-CommonPrism-RT-1</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Prism</td>
<td>k-e-RT</td>
<td></td>
</tr>
<tr>
<td>4 R</td>
<td>Scalabrini</td>
<td>Embraer</td>
<td>ScalabriniL-CommonPrism-SST-1</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Prism</td>
<td>SST</td>
<td></td>
</tr>
<tr>
<td>4 S</td>
<td>Scalabrini</td>
<td>Embraer</td>
<td>ScalabriniL-CommonCustomRT-1</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Custom (Hybrid)</td>
<td>k-e-RT</td>
<td></td>
</tr>
<tr>
<td>4 T</td>
<td>Scalabrini</td>
<td>Embraer</td>
<td>ScalabriniL-CommonCustomSST-1</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Custom (Hybrid)</td>
<td>SST</td>
<td></td>
</tr>
<tr>
<td>5 U</td>
<td>Ellasson</td>
<td>FOI</td>
<td>EllassonP-CommonHex-EARSM-1</td>
<td>EDGE</td>
<td>Hex</td>
<td>EARSM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 V</td>
<td>Ellasson</td>
<td>FOI</td>
<td>EllassonP-CommonHex-SA-1</td>
<td>EDGE</td>
<td>Hex</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 W</td>
<td>Ellasson</td>
<td>FOI</td>
<td>EllassonP-CommonHex-SST-1</td>
<td>EDGE</td>
<td>Hex</td>
<td>SST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 X</td>
<td>Powell</td>
<td>Gulfstream</td>
<td>PowellIN-CommonHybrid-SA-1</td>
<td>FUN3D</td>
<td>Hybrid</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Y</td>
<td>Balakrishnan</td>
<td>Indian Inst. Science</td>
<td>BalakrishnanN-CommonHex-SA-1</td>
<td>HiFUn</td>
<td>Upwind</td>
<td>Hex</td>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>8 Z</td>
<td>Hashimoto</td>
<td>JAXA</td>
<td>Hashimoto-CommonHex-SA-1</td>
<td>FaSTAR</td>
<td>Upwind</td>
<td>Hex</td>
<td>SA-noft2-R</td>
<td></td>
</tr>
<tr>
<td>8 A</td>
<td>Hashimoto</td>
<td>JAXA</td>
<td>Hashimoto-CommonCustom-SA-1</td>
<td>FaSTAR</td>
<td>Upwind</td>
<td>Custom (Hex)</td>
<td>SA-noft2-R</td>
<td></td>
</tr>
<tr>
<td>Team</td>
<td>ID</td>
<td>Name</td>
<td>Organization</td>
<td>File Name</td>
<td>Code</td>
<td>Misc Solver</td>
<td>Grid Type</td>
<td>Turbulence Model</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>Yamamoto</td>
<td>JAXA</td>
<td>YamamotoK-CommonMB-SA-noft2-R-1</td>
<td>UPACS</td>
<td>Upwind</td>
<td>Multi-block</td>
<td>SA-noft2-R [Crot=1]</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Olson</td>
<td>NASA Ames</td>
<td>Olsen-CommonOverset-LagRST-1</td>
<td>overflow2.2e_LRS</td>
<td>Central/matrix</td>
<td>Ospert</td>
<td>Lag RST</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Park</td>
<td>NASA Langley</td>
<td>ParkM-CommonHybrid-SA-1</td>
<td>FUN3D v12.2</td>
<td>Upwind Roe</td>
<td>Multi-block</td>
<td>SA</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Cali</td>
<td>NPL China</td>
<td>Cali-CommonOverset-SST-1</td>
<td>ExStream</td>
<td>Upwind</td>
<td>Ospert</td>
<td>SST</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>Hue</td>
<td>ONERA China</td>
<td>HueO_CommonMB_SA_1</td>
<td>elsA</td>
<td>Central</td>
<td>Multi-block</td>
<td>SA</td>
</tr>
<tr>
<td>14</td>
<td>a</td>
<td>Coder</td>
<td>Penn St. U</td>
<td>CoderlI-CommonOverset-SA-fv3-1</td>
<td>OVERFLOW 2.2c</td>
<td>Upwind</td>
<td>Ospert</td>
<td>SA-fv3</td>
</tr>
<tr>
<td>15</td>
<td>b</td>
<td>Osusky</td>
<td>U. Toronto</td>
<td>OsuskyM-CommonMB-SA-1</td>
<td>Diablo</td>
<td>Scalar</td>
<td>Multi-block</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Osusky</td>
<td>U. Toronto</td>
<td>OsuskyM-CommonMB-SA-2</td>
<td>Diablo</td>
<td>Matrix</td>
<td>Multi-block</td>
<td>SA</td>
</tr>
<tr>
<td>16</td>
<td>e</td>
<td>Levy</td>
<td>Cessna Aircraft Co.</td>
<td>LevyO-CommonHybrid-SA-1</td>
<td>NSJ3D</td>
<td>Central/matrix</td>
<td>Hybrid</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>Levy</td>
<td>Cessna Aircraft Co.</td>
<td>LevyO-CommonHybrid-SA-2</td>
<td>FUN3D</td>
<td>Upwind Roe</td>
<td>Hybrid</td>
<td>SA</td>
</tr>
<tr>
<td>17</td>
<td>g</td>
<td>Crippa</td>
<td>DLR</td>
<td>DLR_CrippaS-CommonHex-SA-1</td>
<td>TAU</td>
<td>Matrix</td>
<td>Hex</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>Crippa</td>
<td>DLR</td>
<td>DLR_CrippaS-CommonHex-SST-1</td>
<td>TAU</td>
<td>Matrix</td>
<td>Hex</td>
<td>SST</td>
</tr>
<tr>
<td>18</td>
<td>k</td>
<td>Moitra</td>
<td>CRL INDIA</td>
<td>CRL INDIA_MoitraA</td>
<td>CFD++</td>
<td>Upwind</td>
<td>Prism</td>
<td>SA-RC</td>
</tr>
<tr>
<td>19</td>
<td>m</td>
<td>Winkler</td>
<td>Boeing (St. Louis)</td>
<td>BCFD-CommonHex-SA-1</td>
<td>BCFD</td>
<td>Upwind HLLE</td>
<td>Hex</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>Winkler</td>
<td>Boeing (St. Louis)</td>
<td>BCFD-CommonHex-SST-V-1</td>
<td>BCFD</td>
<td>Upwind HLLE</td>
<td>Hex</td>
<td>SST-V</td>
</tr>
<tr>
<td></td>
<td>q</td>
<td>Winkler</td>
<td>Boeing (St. Louis)</td>
<td>BCFD-CommonHex-SA-2</td>
<td>BCFD</td>
<td>Upwind HLLE</td>
<td>Hex</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>Winkler</td>
<td>Boeing (St. Louis)</td>
<td>BCFD-CommonHex-SST-V-2</td>
<td>BCFD</td>
<td>Upwind HLLE</td>
<td>Hex</td>
<td>SST-V</td>
</tr>
<tr>
<td>20</td>
<td>t</td>
<td>Temmerman</td>
<td>NUMEA</td>
<td>DPW-V NUMEA</td>
<td>FINE/Open</td>
<td>Cell Centered</td>
<td>Multi-block</td>
<td>SA</td>
</tr>
<tr>
<td>21</td>
<td>α</td>
<td>Brodersen</td>
<td>DLR</td>
<td>DLR_BrodersenO_Cust1_SA_D1</td>
<td>TAU</td>
<td>Diss 1</td>
<td>Custom</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>Brodersen</td>
<td>DLR</td>
<td>DLR_BrodersenO_Cust1_SA_D3</td>
<td>TAU</td>
<td>Diss 3</td>
<td>Custom</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>Brodersen</td>
<td>DLR</td>
<td>DLR_BrodersenO_Cust2_SA_D1</td>
<td>TAU</td>
<td>Diss 1</td>
<td>Custom (Hyb w/ Hex-Wake)</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>Brodersen</td>
<td>DLR</td>
<td>DLR_BrodersenO_Cust2_SA_D3</td>
<td>TAU</td>
<td>Diss 3</td>
<td>Custom (Hyb w/ Hex-Wake)</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>λ</td>
<td>Brodersen</td>
<td>DLR</td>
<td>DLR_BrodersenO_Cust2_SST_D1</td>
<td>TAU</td>
<td>Diss 1</td>
<td>Custom (Hyb w/ Hex-Wake)</td>
<td>Menter SST</td>
</tr>
<tr>
<td></td>
<td>π</td>
<td>Brodersen</td>
<td>DLR</td>
<td>DLR_BrodersenO_Cust2_SST_D3</td>
<td>TAU</td>
<td>Diss 3</td>
<td>Custom (Hyb w/ Hex-Wake)</td>
<td>Menter SST</td>
</tr>
</tbody>
</table>
Case 1: Grid Convergence Study

- NASA Common Research Model, Wing-Body
- Mach=0.85, $C_L=0.500\pm0.001$
- Grid Resolution Level:
 - 1) Tiny
 - 2) Coarse
 - 3) Medium,
 - 4) Fine
 - 5) Extra-Fine
 - 6) Super-Fine
- Chord Reynolds Number: 5×10^6
Case 1: CD_TOT - All Solutions by Grid Type and Turbulence Model
Case 1: CD_PR - All Solutions by Grid Type and Turbulence Model
Case 1: CD_SF - All Solutions by Grid Type and Turbulence Model
Case 1: CM_TOT - All Solutions by Grid Type and Turbulence Model
Case 1: ALPHA - All Solutions by Grid Type
Case 1: CD_TOT – Multi-block and Overset Grids
Case 1: CD_TOT – Unstructured Hexahedral and Prismatic Grids
Case 1: CD_TOT – Unstructured Hybrid and all Custom Grids
Case 1: CD_TOT – Spalart Allmaras and Shear Stress Transport Turb. Models
Case 1: CD_TOT – SA w/ Rotation Correction and SA other Turb. Models
Case 1: CD_TOT – k-ε-RT and EARSM,RST Turbulence Models
Should we Compare to Wind Tunnel?

<table>
<thead>
<tr>
<th>Wind Tunnel</th>
<th>CFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td>Free Air</td>
</tr>
<tr>
<td>Support System (Sting)</td>
<td>Free Air</td>
</tr>
<tr>
<td>Laminar/Turbulent (Tripped)</td>
<td>“Fully” Turbulent (usually)</td>
</tr>
<tr>
<td>Aeroelastic Deformation</td>
<td>Rigid 1g Shape</td>
</tr>
<tr>
<td>Measurement Uncertainty</td>
<td>Numerical Uncertainty & Error</td>
</tr>
<tr>
<td>Corrections for known effects</td>
<td>No Corrections</td>
</tr>
</tbody>
</table>

- Wind Tunnel and CFD measure/compute different things!
- Data are included for reference only!
Case 1: CD_TOT, ALPHA, and CM_TOT with Wind Tunnel Results

Wind Tunnel Results shown for Reference Only
Richardson Extrapolation:

• Standard 2nd order least squares fit (Excel)
• For 2nd order codes, should be linear vs. \text{Grid_Factor} = N^{-2/3}
• Y-intercept estimates theoretical infinite resolution (continuum) result
Case 1: Extrapolated CD_TOT by Grid Type
Case 1: Extrapolated CD_TOT by Grid Type (Common Grids Only)
Case 1: Extrapolated CD_TOT by Grid Type (Common Hex Grids Only)
Conclusions from Richardson Extrapolation:

- Most results are monotonically decreasing
- Some are nonlinear
 - Convergence issues
 - Possible flow-feature changes (SOB or TE Separation)
- No clear break-outs with grid type or turbulence model (except for some outliers)
- Scatter is reduced somewhat for Common Grids
 - Scatter still large for coarser grids
 - Best for Hex-based, including Structured, Overset, and Unstructured
Case 1: Extrapolated CD_TOT Statistics
Conclusions from Case 1 Results:

- Still a lot of scatter!
 - Less than DPW4 (was $\sigma=8.1$ for tail on). Are we getting better?
- No clear break-outs with grid type or turbulence model
 - Some Turb. Models are outliers
 - Trends are still hard to isolate due to small sample sizes
- Agreement with experiment on CD_TOT is better than for ALPHA and CM_TOT
 - Wing aeroelastic effects are likely part of this
 - Spread in CD_TOT is similar between wind tunnel and CFD scatter
- Scatter is reduced somewhat for Common Grids
 - Statistics did not change significantly
 - Best for Hex-based, including Structured, Overset, and Unstructured
 - Discretization and Turbulence Modeling is still a major contributor
Case 2 Buffet Study:

- NASA Common Research Model, Wing-Body
- Mach=0.85:
 - $\alpha=2.50^\circ, 2.75^\circ, 3.00^\circ, 3.25^\circ, 3.50^\circ, 3.75^\circ, 4.00^\circ$
- Grid Resolution Level:
 - 3) Medium,
- Chord Reynolds Number: 5×10^6
Case 2 – All Solutions

Pseudo Test Data

NTF and Ames Test Data

Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
CREATION OF “PSEUDO TEST DATA”

- The CRM geometry used for DPW5 was that of the wind tunnel model definition.
- AIAA-2012-3209 details recent CFD analyses to account for the wing aeroelastic twist at Mach=0.85, CL=0.50, and for additional wind tunnel mounting system effects.
- “Pseudo Test Data” were created from the NTF data and CFD analyses to reflect what the test data might look like for the wing without the “CL=0.50 aeroelastic” twist.

No corrections were applied to drag data.
Case 2 - All Solutions

NTF and Ames Test Data
Case 2 – All Solutions

NTF and Ames Test Data
Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
PRISIM Grids

Custom Unstructured Grids

Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Other Turbulence Models

Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
ΔCL = 0.055

ΔCM = 0.043

Outliers defined by CLbreak and/or drag behavior

Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Outliers defined by CLbreak and/or drag behavior
CFD spread similar to test data spread!
Case 2 - Concluding Remarks

- No clear break-outs with grid type or turbulence model (except for some outliers)
- In general, the k-e-RT and Lag RST results tend outside the norm of the other solutions.
- For all solutions minus outliers
 - Relatively tight forces and moment at $\alpha=2.5^\circ$
 - Significant force and moment spread at $\alpha=4.0^\circ$, $\Delta CL=0.055$, $\Delta CM=0.043$
- CM predicted too negative – is it CFD, test, geometry, etc.?
- Steady aeroelastic effects are significant
 - Must be included in CFD to better assess accuracy
- Wing section characteristics (section CL, CM) needed to better assess CFD
- High angles of attack characterized by significant shock induced separation
 - How steady is the real flow at these conditions? Need dynamic test data?
 - If there is a significant amount of flow unsteadiness at high angles of attack is RANS adequate or do we need URANS or DES?
Pressure Data

<table>
<thead>
<tr>
<th>WBL</th>
<th>ETA</th>
<th>Chord</th>
</tr>
</thead>
<tbody>
<tr>
<td>121.459</td>
<td>0.1050</td>
<td>466.5</td>
</tr>
<tr>
<td>133.026</td>
<td>0.1150</td>
<td>459.6</td>
</tr>
<tr>
<td>144.594</td>
<td>0.1250</td>
<td>452.7</td>
</tr>
<tr>
<td>151.074</td>
<td>0.1306</td>
<td>448.8</td>
</tr>
<tr>
<td>232.444</td>
<td>0.2009</td>
<td>400.7</td>
</tr>
<tr>
<td>327.074</td>
<td>0.2828</td>
<td>345.0</td>
</tr>
<tr>
<td>396.765</td>
<td>0.3430</td>
<td>304.1</td>
</tr>
<tr>
<td>427.998</td>
<td>0.3700</td>
<td>285.8</td>
</tr>
<tr>
<td>459.370</td>
<td>0.3971</td>
<td>278.1</td>
</tr>
<tr>
<td>581.148</td>
<td>0.5024</td>
<td>248.3</td>
</tr>
<tr>
<td>697.333</td>
<td>0.6028</td>
<td>219.9</td>
</tr>
<tr>
<td>840.704</td>
<td>0.7268</td>
<td>184.8</td>
</tr>
<tr>
<td>978.148</td>
<td>0.8456</td>
<td>151.2</td>
</tr>
<tr>
<td>1098.926</td>
<td>0.9500</td>
<td>121.7</td>
</tr>
<tr>
<td>1122.048</td>
<td>0.9700</td>
<td>116.0</td>
</tr>
<tr>
<td>1145.183</td>
<td>0.9900</td>
<td>110.5</td>
</tr>
</tbody>
</table>
Case 1: Level 3 Grid, $M=0.85$, $C_L=.50$

Spanwise Variation

NTF Test 197 Run 44:

- $\alpha=2.68^\circ$, $C_L=0.485$
- $\alpha=2.91^\circ$, $C_L=0.519$
Case 1: Grid Refinement Study, $M=0.85$, $C_L=0.50$
Station 10, $\eta=0.502$

NTF Test 197 Run 44:
- $\alpha=2.68^\circ$, $C_L=0.485$
- $\alpha=2.91^\circ$, $C_L=0.519$
Case 2: Buffet Study, Level 3 Grids, M=0.85
Station 10, η=.502

NTF Test 197 Run 44:
- α=2.68°, CL=0.485
- α=2.91°, CL=0.519

NTF Test 197 Run 44:
- α=2.91°, CL=0.519
- α=3.19°, CL=0.557

NTF Test 197 Run 44:
- α=3.42°, CL=0.584
- α=3.70°, CL=0.607

NTF Test 197 Run 44:
- α=3.70°, CL=0.607
- α=3.92°, CL=0.621

NTF Test 197 Run 44:
- α=3.92°, CL=0.621
- α=4.17°, CL=0.638
Conclusions from Pressure Data:

• Agreement with experiment deteriorates at outboard stations, likely due to aeroelastic effects
• Variations with grid level hard to discern due to reduced number of data sets
• Variation at high alphas due to separation effects on shock location
• No clear break-out with grid type (Turbulence model affects not examined yet)
Separation Bubble

Skin Friction Contours

Grayed Area Indicates Region of Negative C_F

Saddle points

Dividing Streamlines

$(FS_{EYE}, BL_{EYE}, WL_{EYE})$
Side of Body Separation Bubble

1. Reported some level of SOB Separation:
 I, J, K, L, X, Y, Z, 3, 4, 5, 6, 7, 9,
 b, d, f, g, h, k, t, α, β, δ, γ, λ, π

2. Reported no SOB Separation (SOB File Provided):
 U, V, W, 2, e, m, n, q, r

3. No Report (No SOB File Provided):
 A, B, C, D, E, F, G, H, M, N, O, P, Q, R, S, T, 8, a
Example Grid Refinement: with Dataset “f” only
Grid Refinement: All Data
Bubble Width (Wing): Case 1 By Grid Type and Turbulence Model
Bubble Leading Edge: Case 1 By Grid Type and Turbulence Model
Bubble Height (Fuselage): Case 1 By Grid Type and Turbulence Model
Example Alpha Sweep: with Dataset “f” only
Alpha Sweep: All Data
Bubble Width (Wing): Case 2 By Grid Type and Turbulence Model
Bubble Leading Edge: Case 2 By Grid Type and Turbulence Model
Bubble Height (Fuselage): Case 2 By Grid Type and Turbulence Model
Conclusions from Separation Bubble:

• Variation with grid level fairly consistent (note that coarse level grids do not have proper resolution)

• Some data sets show dramatic increase in bubble size at higher alpha
 – Mostly for Spalart-Allmaras results
Trailing Edge Separation:

- DPW-4: C_f normal to TE < 0 as criteria
- For higher α more difficult to define & detect
Case 1: Trailing Edge Separation, Level 1
Case 1: Trailing Edge Separation, Level 2
Case 1: Trailing Edge Separation, Level 3
Case 1: Trailing Edge Separation, Level 4
Case 1: Trailing Edge Separation, Level 5
Trailing Edge Separation, Alpha = 2.5°

- Overset, MB, Hyb., Cust.
- Hex
- Prism

- k-ε-\(R_t\)
- SST
- SA
- EARSM, RST
Trailing Edge Separation, Alpha = 3.0°

- Overset, MB, Hyb., Cust.
- Hex
- Prism

Legend:
- k-ε-R_t
- SST
- SA
- EARSM, RST
Trailing Edge Separation, Alpha = 3.5°

- Overset, MB, Hyb., Cust.
- Hex
- Prism

k-ε-R_t
SST
SA
EARSM, RST
Trailing Edge Separation, Alpha = 4.0°

- Overset, MB, Hyb., Cust.
- Hex
- Prism
Conclusions from Trailing Edge Separation:

• Case 1:
 – SA, SST show similar small TE sep ≤ 2% between sections 8, ..., 14
 – Slightly larger for SST on coarse, medium grids

• Case 2:
 – Trend to extend towards sections 5 & 16 for $\alpha \geq 2.5^\circ$
 – No clear conclusion

• Overall check necessary whether same TE sep identification procedure has been applied
General Conclusions:

• Very successful workshop. Thank You!
 – 54 data submittals, many with parametric variations in grid type and/or turbulence model

• Still more variation than desired
 – Some improvement from DPW4: We are getting better
 – Mixed results from common grid study. Discretization and turbulence modeling are still a factor

• Drag comparisons to wind tunnel generally favorable
 – Variations similar between WT and CFD
 – ALPHA and CM_TOT offsets
 – Aeroelasticity
General Conclusions (Cont’d):

• Force/Moment predictions better at $\alpha=2.5^\circ$
 – Less separation
 – Bigger spread at $\alpha=4.0^\circ$

• Pressures consistent with Force/Moments
 – Correlation outboard supports aeroelastic effects
 – Wide variation in α for shock separation

• Large variations in separation prediction
 – SOB Separation
 – TE Separation and Buffet onset alpha
 – Is RANS good enough? Is flow steady?
Further Study:

- Check SOB/TE separation with wind tunnel data
 - Is flow visualization data available?
- Include static aeroelastics in CFD
 - Needed to match wind tunnel data
- Include boundary layer transition model
 - Forced/Free
- Unsteady RANS?
 - Will only help if flow is unsteady
- LES/DES?
 - DES only helps for off-body separation
 - LES (beyond current SOA?)
Case 2 - SA Turbulence Model
No CL Break below AoA=4.0

Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209
Case 2 - SST and Other
No CL Break below AoA=4.0

- SST HYBRID
- SST HYBRID
- EARSIM HEX
- SST HEX
- Lag RST Overset
- Pseudo Test

Angle of Attack
CL_TOT
CM_TOT
Pseudo Test data based on NTF test data modified by results from AIAA-2012-3209