OVERFLOW Analysis of the NASA Common Research Model Using WENO and MUSCL Schemes

Presented at the 6th AIAA CFD Drag Prediction Workshop
Washington, D.C.
June 16, 2016

Dr. Jim Coder
Research Associate, Computational Mechanics
Geometry

WB

WBNP
Common Overset Grid System

WB Grid Sizes

- **T:** 7,398,176
- **C:** 14,355,678
- **M:** 24,698,828
- **F:** 39,098,858
- **X:** 58,227,000
- **U:** 82,754,486

WBNP Grid Sizes

- **T:** 11,865,177
- **C:** 22,999,565
- **M:** 39,542,953
- **F:** 62,566,221
- **X:** 93,176,522
- **U:** 132,381,764

- Generated by Boeing (Long Beach) and provided by DPW organizing committee
Objectives and Strategy

• Goal: Assess benefits of using higher-order convective fluxes for cruise drag prediction

• Solver: OVERFLOW 2.2l
 – Structured, overset solver developed by NASA

• Cases: 2 and 3
 – WB and WBNP grid convergence, nacelle-pylon drag increment
 – Alpha sweep with static aeroelastic deflections, buffet study
Objectives and Strategy

• 5th-order WENO vs. 3rd-order MUSCL with Roe fluxes
 – 2nd-order viscous fluxes for both

• ARC3D scalar pentadiagonal LHS for first 5000 iterations
 – Grid sequencing and multigrid for convergence acceleration

• Switch to SSOR left-hand side until convergence
 – No artificial dissipation (DIS2 = 0, DIS4 = 0)
 – No multigrid

• USURP force/moment integration

• OVERFLOW’s C_L driver used to update AoA during solution
Objectives and Strategy

- SSOR + multigrid did not lead to favorable results
Turbulence Modeling

• Spalart-Allmaras model with Spalart-Shur rotation/curvature correction and the quadratic constitutive relation (‘SA-RC-QCR2000’)
 – RC correction beneficial in tip region
 – QCR improves predictions in wing-body junctures (side-of-body separation) by introducing turbulence anisotropy

• Case are assumed a priori to be fully attached (or nearly so) with an attainable and meaningful steady RANS solution
Quadratic Constitutive Relation

• Non-linear Reynolds-stress closure

\[
\tau_{ij} = \tau_{ij}^{linear} - C_{nl1} \left[O_{ik} \tau_{jk}^{linear} + O_{jk} \tau_{ik}^{linear} \right]
\]

\[
\tau_{ij}^{linear} = 2\mu_t \left[S_{ij} - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right] - \frac{2}{3} \rho k \delta_{ij}
\]

\[
O_{ij} = \frac{\Omega_{ij}}{\left(\frac{\partial u_m}{\partial x_n} \frac{\partial u_m}{\partial x_n} \right)}
\]

• Promotes 4:2:3 principal stress ratio in planar shear layers
 – Accepted value: \(C_{nl1} = 0.3 \) (used here)
 – ‘True’ values: \(C_{nl1} = 0.358 \) (\(a_1 = 0.31 \)); \(C_{nl1} = 0.370 \) (\(a_1 = 0.30 \))
Case 2: CRM Nacelle-Pylon Drag Increment
Case 2: Drag Convergence

WB

WBNP
Case 2: ΔC_D Convergence
Case 2: Alpha and Pitching-Moment Convergences

Angle of Attack

Pitching-Moment Coefficient
Case 2: C_p Comparisons (Medium Grid)
Case 2: CRM-WBNP Surface Streamlines (Medium Grid)

3rd-order Roe

5th-order WENO
Case 3: CRM-WB Static Aero-Elastic Effect
Strategy

• Same solver parameters as Case 2(a)
 – 3rd-order Roe vs. 5th-order WENO, SSOR LHS, no dissipation

• Restart from lower alphas
 – Converge $\alpha = 2.50^\circ$ first
 – Start $\alpha = 2.75^\circ$ from $\alpha = 2.50^\circ$ solution, etc.

• Run until force/moment convergence
Case 3: Force and Moment Comparisons

5th-order WENO
\(\alpha = 4^\circ \)
Observations and Conclusions
Observations and Conclusions

• Higher-order convective fluxes had no impact on formal order of accuracy
 – Two fringe layers (PEGASUS connectivity)
 – Viscous terms and grid metrics remain 2nd-order
 – SA convective terms are 1st order

• WENO and Roe solutions are not converging to the same continuum values
 – Similar convergence qualities, small (< 1 ct) offset in drag values
 – Requires further investigation
Observations and Conclusions

• WENO solutions showed oscillations around the shockwave
 – WENOM limiter used, perhaps not effective enough
 – Alternative may be to set DIS2 ≠ 0

• Lift and pitching-moment polar comparisons imply too much lift predicted outboard
 – Need to compare predicted and measured lift distributions
 – Sting not modeled

• SSOR solutions are slow
 – D3ADI showed promise for upwind RHS and DIS4 = 0
Questions?