

Wind Tunnel Test Result Summary for the NASA Common Research Model

2023 AIAA Aviation Forum San Diego, CA

S. Melissa Rivers NASA Langley Research Center

June 12, 2023

- Background
- Experimental Tests
- Results
 - NTF 197
 - Ames 216
 - NTF 215
 - NTF 229
 - ETW
- Concluding Remarks

- Motivation for creation of the Common Research Model
 - modern/industry-relevant data
 - open/public geometries
- Design was led by NASA and Boeing before being frozen in 2008
- NASA's initial commitment: complete two tests that would provide data for the international Drag Prediction Workshop (DPW)-IV (2009, blind calculations)
- Tests
 - 2010, National Transonic Facility (NTF) at the NASA Langley Research Center, NTF 197
 - 2010, 11-Foot Transonic Wind Tunnel Facility (11-Ft) at the NASA Ames Research Center, Ames 216
 - 2013, NTF to provide test-to-test repeatability data, NTF 215
 - 2014, European Transonic Windtunnel (ETW) as part of an EU initiative
 - 2019, NTF to provide test-to-test repeatability data after facility upgrades, NTF 229
- To facilitate the dissemination of the acquired data, a website was set up to provide a place where people from all over the world can retrieve information specifically related to their needs

- Many organizations worldwide have embraced the CRM geometry for both computational and experimental research
 - industry
 - academia
 - government agencies
- Variations of the original CRM have been fabricated and tested in facilities all over the world
- Further CRM-based collaborations and use of the configuration are wide and varied – far beyond the initial expectations in 2007 when the concept was conceived

Background Model Description

Common Research Model

- $S_{ref} = 3.01 \text{ ft}^2$
- c = 7.45 in
- b = 62.46 in
- AR = 9.0
- Designed for M_{∞} = 0.85 and C_{L} = 0.5

- Background
- Experimental Tests
- Results
 - NTF 197
 - Ames 216
 - NTF 215
 - NTF 229
 - ETW
- Concluding Remarks

Experimental Tests

Test	Mach	Re _c , million	α	T _t , ⁰F	Configurations Tested
NTF 197	0.7 to 0.87	5, 19.8, 30	-3° to +12° @ low Re _c -3° to +6° @ high Re _c	-250 up to 120	WB, WBNP, WBT0, WBT-2, WBT+2
Ames 216	0.7 to 0.87	5	-3° to +12°	100	WB, WBNP, WBT0, WBT-2, WBT+2
NTF 215	0.7 to 0.87	5, 19.8, 30	-3° to +12° @ low Re _c -3° to +6° @ high Re _c	-250 up to 120	WB, WBNP, WBT0
NTF 229	0.7 to 0.87	5, 19.8, 30	-3° to +12° @ low Re _c -3° to +6° @ high Re _c	-250 up to 120	WB, WBT0
ETW	0.25 to 0.87	5, 19.8, 30	-3° to +12° @ low Re _c -3° to +6° @ high Re _c	-249 to 84	WBT0

Experimental Tests

 More details can be found in AIAA 2010-4218, AIAA 2011-1126 and AIAA 2015-1093

- Background
- Experimental Tests
- Results
 - NTF 197
 - Ames 216
 - NTF 215
 - NTF 229
 - ETW
- Concluding Remarks

Tue Nov 21 08:36:32 20

Results & Discussion NTF 197 Pylon/Nacelle Effects

- $M_{\infty} = 0.85$, $Re_c = 5x10^6$
- Adding a pylon/nacelle lowers C_L , increases C_D , and gives a lower nose down C_m around the design point of $C_L = 0.5$

10

Results & Discussion NTF 197 Aeroelastic Effects

- WBT0, $M_{\infty} = 0.85$, $Re_c = 19.8 \times 10^6$
- Increase in q_{∞} gives a lower C_L , a higher C_D value, and a lower nose down pitching moment for this configuration

Results & Discussion NTF 197 Tail Effects

- $M_{\infty} = 0.85$, $Re_c = 5x10^6$
- Going from a -2° to a +2° tail setting gives an increase in C_L , shows a decrease in C_D , and gives an increase in nose down C_m for both wind tunnels

Results & Discussion NTF 197 Reynolds Number Effects

- WB, M_∞ = 0.85
- Increase in Re_c gives an increase in C_L , decrease in C_D and an increase in nose down pitching moment

- Background
- Experimental Tests
- Results
 - NTF 197
 - Ames 216
 - NTF 215
 - NTF 229
 - ETW
- Concluding Remarks

Results & Discussion NTF 197 and Ames 216 Nacelle/Pylon Effects

- $M_{\infty} = 0.85$, $Re_c = 5x10^6$
- Adding a pylon/nacelle gives a decrease in $C_{\rm L},$ an increase in $C_{\rm D},$ and a lower nose down $C_{\rm m}$ in both wind tunnels

Results & Discussion NTF 197 and Ames 216 Tail effects

- $M_{\infty} = 0.85$, $Re_c = 5x10^6$
- Going from a -2° to a +2° tail setting gives an increase in C_L , a decrease in C_D , and an increase in nose down C_m for both wind tunnels

- Background
- Experimental Tests
- Results
 - NTF 197
 - Ames 216
 - NTF 215 & 229
 - ETW
- Concluding Remarks

Results & Discussion NTF 197, NTF 215 and NTF 229 Test-to-Test Comparison

• WB, $M_{\infty} = 0.85$, $Re_c = 5x10^6$

Results & Discussion NTF 197, NTF 215 and NTF 229 Test-to-Test Comparison

• WB, $M_{\infty} = 0.85$, $Re_c = 30 \times 10^6$

Results & Discussion NTF 197, NTF 215 and NTF 229 Test-to-Test Comparison

• WBT0, $M_{\infty} = 0.85$, $Re_c = 5x10^6$

Results & Discussion NTF 197, NTF 215 and NTF 229 Test-to-Test Comparison

• WBT0, $M_{\infty} = 0.85$, $Re_c = 30 \times 10^6$

- Background
- Experimental Tests
- Results
 - NTF 197
 - Ames 216
 - NTF 215 & 229
 - ETW
- Concluding Remarks

Results & Discussion NTF and ETW Test-to-Test Comparison

Results & Discussion NTF and ETW Test-to-Test Comparison

- Background
- Experimental Tests
- Results
 - NTF 197
 - Ames 216
 - NTF 215
 - NTF 229
 - ETW
- Concluding Remarks

- CRM created to provide modern/industry-relevant data and open/public geometries
- Same model tested in three different facilities worldwide
- Extensive database has been developed for both computational and experimental research
- CRM derivatives continue to be developed and tested