DPW-8 & AePW-4 All-Hands Meeting and Mini Workshop 1

January 9, 2025

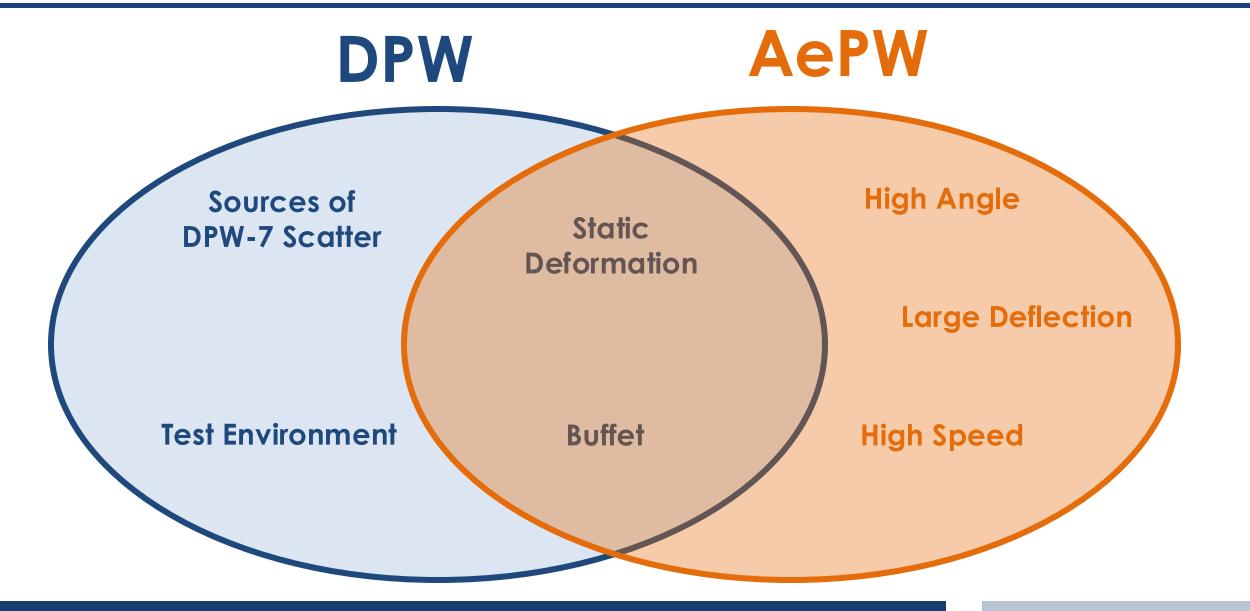
In-Person and Virtual

https://aiaa-dpw.larc.nasa.gov

https://nescacademy.larc.nasa.gov/workshops/AePW4/public

Outline

- 9:30 Introduction and Motivation
- 9:40 Working Group Updates
- 10:15 Mini Workshop
- 10:50 CRM Look-Ahead
- 11:25 Open Discussion
- 1:00 Bayhill 26 Available for Discussion Until 3:00


Workshop Overview

- DPW and AePW will hold a co-hosted workshop at Aviation 2026 (San Diego, CA)
 DPW-8 and AePW-4
- The next generation of computational goals is highly multidisciplinary
 - There are things that DPW does well, that AePW does not: and vice-versa
 - If we work together, we can push the SOA further, faster, than if we remain separate
- We are using a working group (WG) model, with 7 total WGs
 - Two of the WGs live entirely under the DPW umbrella
 - Three of the WGs live entirely under the AePW umbrella
 - Two of the WGs are co-sponsored
- Goals
 - Benchmark methods performance between multiple codes and schemes
 - Establish SOA for static and dynamic FSI; identify opportunities for improvement
 - DPW: mature the foundations required for accurate predictions
 - AePW: progress toward best practices for aeroelastic solvers

Working Groups Layout

Workshop Leadership

Name	Role	Email Address		
Brent Pomeroy	DPW, Buffet WG	brent.w.pomeroy@nasa.gov		
Ben Rider	DPW, Static Deformation WG	ben.j.rider2@boeing.com		
Bret Stanford	AePW, Buffet WG	bret.k.stanford@nasa.gov		
Pawel Chwalowski	AePW, High Angle WG	pawel.chwalowski@nasa.gov		
Marshall Galbraith	Scatter WG	galbramc@mit.edu		
Kevin Holst	Scatter WG	kholst@utk.edu		
Ed Tinoco	Scatter WG	entinoco@icloud.com		
Sheida Hosseini	Test Environments WG	seyedeh.sheida.hosseini@nasa.gov		
Melissa Rivers	Test Environments WG	s.m.rivers@nasa.gov		
Garrett McHugh	Static Deformation WG	garrett.mchugh@nasa.gov		
Stefan Keye	Static Deformation WG	<pre>stefan.keye@dlr.de</pre>		
Andrea Sansica	Buffet WG	<pre>sansica.andrea@jaxa.jp</pre>		
Daniella Raveh	Buffet WG	daniella@technion.ac.il		
Hadar Ben-Gida	Buffet WG	bengida19890gmail.com		
Fulvio Sartor	Buffet WG	fulvio.sartor@onera.fr		
Jeff Housman	Buffet WG	jeffrey.a.housman@nasa.gov		
Johan Jansson	Buffet WG	jjan@kth.se		
Rafa Palacios	Large Deformation WG	r.palacios@imperial.ac.uk		
Kirk Brouwer	High Speed WG	kirk.brouwer.1@us.af.mil		

Workshop Leadership Global Presence

Source: OpenStreetMap Open source, subject to Open Database License

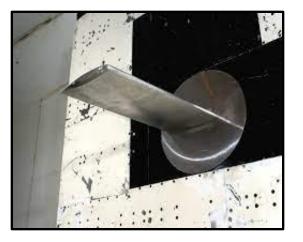
Goals for Today

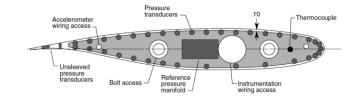
- 1. Give a brief status update for each of the 7 Working Groups (WGs)
 - Emphasis on "Key Questions"
- 2. The two joint WGs, as well as the Scatter group, have considered a preliminary 2D airfoil case: we will present some of this data in the form of a mini-workshop
- 3. Finally, the two joint WGs will soon transition from the airfoil case to more realistic wing-body-tail problems (CRM)
 - Grid requirements and update
 - Discussion of available experimental data
 - Discussion of available finite element models

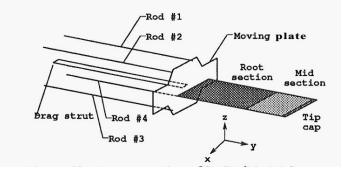
Outline

- 9:30 Introduction and Motivation
- 9:40 Working Group Updates
- 10:15 Mini Workshop
- 10:50 CRM Look-Ahead
- 11:25 Open Discussion
- 1:00 Bayhill 26 Available for Discussion Until 3:00

Outline


9:30 Introduction and Motivation


9:40 Working Group Updates


- AePW: High Angle, High Speed, and Large Deformation
- DPW: Source of Scatter and Test Environment
- Hybrid: Static Deformation and Buffet
- 10:15 Mini Workshop
- 10:50 CRM Look-Ahead
- 11:25 Open Discussion
- 1:00 Bayhill 26 Available for Discussion Until 3:00

Led by Pawel Chwalowski, NASA Langley Meet the 2nd Thursday of every month at 10 EST

- Focus on transonic aeroelastic flutter for the Benchmark Supercritical Wing (BSCW)
 - Tested in the NASA LaRC Transonic Dynamics Tunnel (TDT) in the early 1990s, as part of the Benchmark Models Program
 - A rigid rectangular wing attached to a pitch and plunge apparatus (PAPA)
 - Experimental flutter points at a range of Mach and AoAs
 - Finite element model available, as well as a family of unstructured meshes
- Scheduled to be tested again in TDT in summer of 2025 (uPSP, PIV, sweep of Mach and AoA's)

Mandatory case in 3D

- Flutter prediction at Mach 0.80 and angle-of-attack sweep: 0° 6°
- Optional case in 3D
 - Flutter prediction at Mach 0.74, 0.76, 0.78 and angle-of-attack 3°

Mandatory case in 2D (?)

– Flutter prediction at Mach 0.80 and angle-of-attack sweep: 0° – 6°

Currently we have 7 teams utilizing time-domain, frequency domain, and ROM methods to compute flutter dynamic pressure and frequency.

High Angle WG: Key Questions

- Are uRANS solutions sufficient to predict flutter at BSCW experimental conditions, considering a separated flow?
- Will additional experimental data be available to assess the shock motion and the separated flow features near flutter?
- Is the reduction of spatial dimension from 3D to 2D, helpful in BSCW flutter analysis?
- Is there a quantifiable relationship between the shock buffet and the flutter onset?
- How do we determine uncertainty in our analyses, considering nonlinear aerodynamic model, linear structural dynamics model, the coupling between models, and the experimental data?

Working Group Update: AePW High Speed

- Leadership: Kirk Brouwer, US Air Force Research Laboratory
- Meets the fourth Thursday of every-other-month at 5:00 pm Eastern time
 And at 8:00 am ET on the alternating months
- Selected challenge problems
 - RC-19: large-amplitude, nonlinear dynamics of a thin panel with and without SBLI
 - HyMAX: Linear response of a cantilevered plate to transitional, separated SBLI
- Current participation: 109 members on the email chain, 6 groups working on RC-19, 4 groups working on HyMAX
- Near term goals: Continue working until more participants make comparisons with experiments (Several participants presenting at AIAA Aviation)

	Duke	NASA	DLR	UNSW	MIT	Stevens	UC/ARL	Metacomp
RC-19	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
HyMAX	\checkmark				\checkmark	\checkmark	\checkmark	

High Speed WG: Future Directions

• RC-19 updates:

- Separated SBLI with snap-through
- Swept SBLI configurations (attached, swept SBLI configuration already tested and a separated swept SBLI is planned)

Variations of HyMAX

- Plans to test a similar configuration to HyMAX in the AFRL M6HRF
- Will allow for longer flow times, O(min), with the potential to observe flutter in the presence of thermal effects

• Other experiments:

- M6HRF compliant panel tests led by Zach Riley (AFRL)
- Inputs from AePW HSWG participants/AIAA FSI DG?

High Speed WG: Key Questions

- 1. Objective: Assess the SoA of aerothermoelastic toolsets in high speed applications
- 2. What are the physical mechanisms that drive the various types of aerothermoelastic instabilities in high speed flows?
- 3. How accurately can dynamic aerothermoelastic instabilities be calculated? (Identifying onset of the instability vs the post-threshold behavior)
- 4. Develop guidelines/metrics for modeling instabilities: What level of model fidelity is required? How much accuracy is lost when using lower fidelity methods?
- 5. What is the uncertainty in our models? How does uncertainty propagate when coupling multiple models?
- 6. What are the gaps/uncertainties in current experimental datasets that need to be addressed with followon or new experiments?
- 7. How well do the SoA models handle complex structures and flow environments (transition, separation, SBLI, 3-D effects)?

Working Group Update: AePW Large Deformation

- Leadership: Rafa Palacios, Imperial College London
 - Monthly tag-ups on the third Thursday of the month
 - Repo with meeting presentations and videos hosted at Imperial
 - 62 members on mailing list
- Focus so far on assessment of potential experimental configurations
- Candidate test case shortlist:
 - Pazy Wing (LCO, swept wing): Technion
 - Delft-Pazy wing (gust response, floating wingtip): TU Delft
 - EASE (pitch/plunge mounted, ASE): U. Michigan
- Recent straw poll showed much work on simulation has started, mostly on Pazy wing. That will pick momentum during 2025

Large Deformation WG: Key Questions

- What are the unique aeroelastic phenomena of very flexible structures that undergo large deformations?
 - Post-flutter behaviour, large-amplitude gust response, control surface forces
 - How do these vary for different geometries and boundary conditions (sweep, rigidbody motions)?
- What are the structural/aerodynamic nonlinearities driving the LCO of very flexible wings?
- What are adequate structural/aerodynamic (steady and unsteady) modeling assumptions?
 - Benchmarking of solution methods
 - Recommendations for a production environment

Working Group Update: DPW Scatter

- Seek to identify deviations in DPW-7 CRM data
- Significant spread in solvers post pitchup (all submissions plotted)

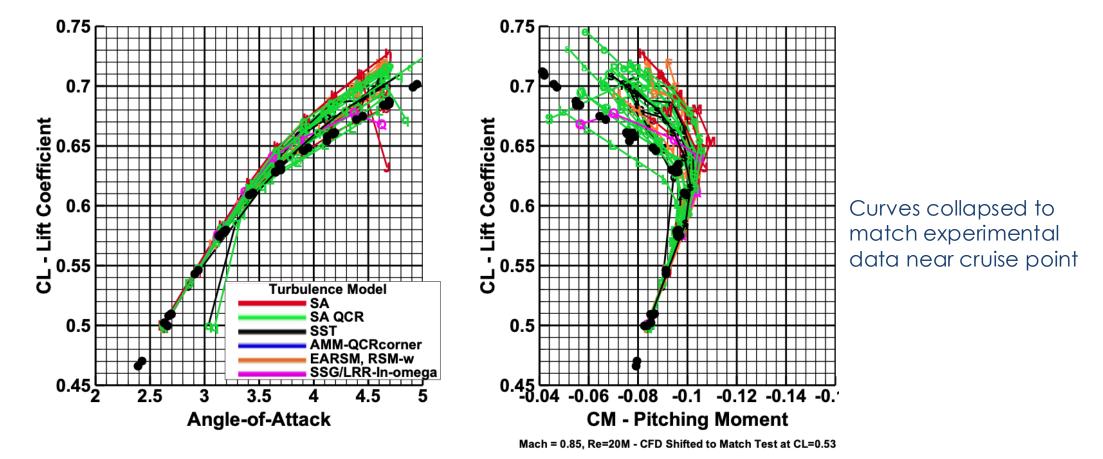
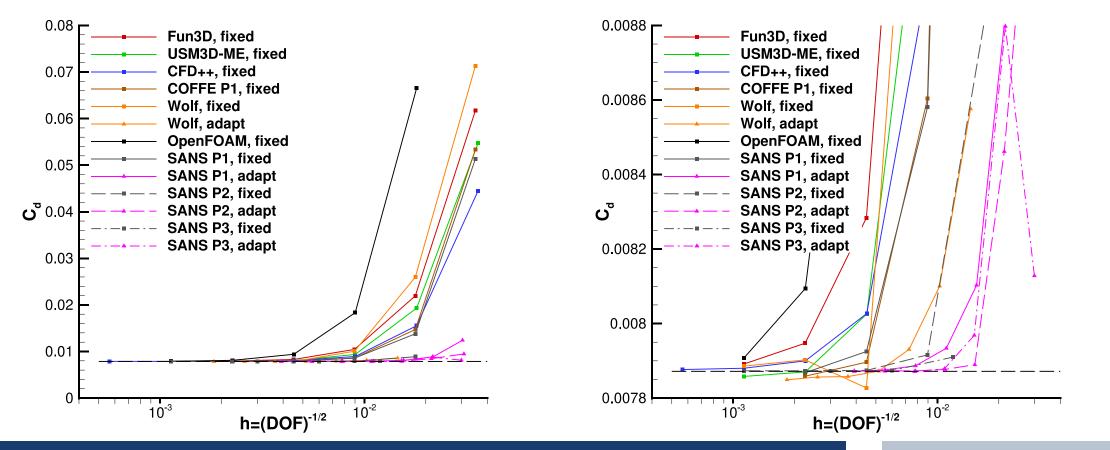


Image source:

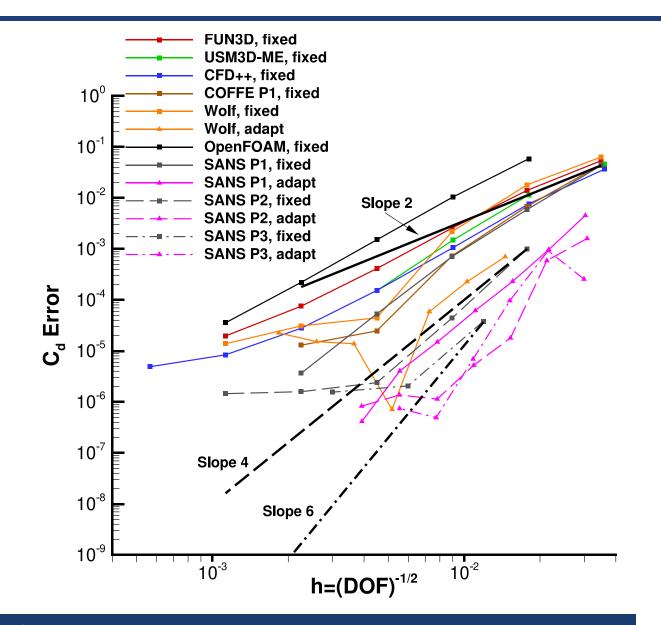
Tinoco, E., et al., "Summary Data from the Seventh AIAA CFD Drag Prediction Workshop," AIAA 2023-3492

Scatter WG: Update

- Three test cases defined to varying degrees
 - Test Case 1a: ONERA OAT15A (now)
 - Establish current level of scatter
 - These data will be shown later, as part of the mini-workshop
 - Test Case 1b: Joukowksi Airfoil
 - Pin-point causes of scatter
 - Test Case 1c: ONERA OAT15A
 - Significantly reduced scatter
 - Test Case 2: CRM Wing
 - Examine scatter for 3D


Sustained meeting cadence and structure

- Approx 20 people on distribution list
- Average 15 attendees in each meeting
- Meeting Tuesdays 10am ET on 2nd and 4th week of the month


Scatter WG: Joukowski Airfoil

- High-Fidelity CFD Verification Workshop 2024
- Cusped trailing edge remove inviscid singularity
- Zero angle of attack stagnation point at leading edge

Scatter WG: Joukowski Airfoil Order of Accuracy

Scatter WG: Key Questions

- What is the source of scatter amongst the the DPW-7 CRM simulations?
- Can RANS capture the early portion of pitchup?
- What grid metrics are needed to adequately capture the shock?

Working Group Update: DPW Test Environments

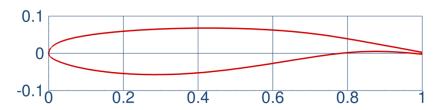
- 35 participants expressed interest in original survey
- Working Group High Level Goal:
 - Increase understanding and quantify expectations for comparisons between free-air CFD and measured Wind Tunnel "truth"
 - Force/Moment balance and pressure tap measurements
- Anticipated Timeline
 - DPW-8
 - Phase 0: ONERA OAT15A Airfoil
 - Phase 1: Tare and interference from Model mounting systems

-NASA CRM

- -NASA CRM + Upper Sweep Strut & Sting
- -NASA CRM + Upper Sweep Strut & Sting + Arc Sector
- DPW-8 +
 - Phase 2: Wind Tunnel Walls
 - -NASA CRM
 - -NASA CRM + Upper Sweep Strut & Sting
 - -NASA CRM + Upper Sweep Strut & Sting + Arc Sector

Stay tuned for monthly meeting invites!

Interested to participate? Reach out to Sheida @ seyedeh.sheida.hosseini@nasa.gov


Test Environments WG: Key Questions

- How much of the spread between experimental and computational results is due to the test environment?
- What methods are needed to quantify the effect of the mounting hardware on force/moment and pressure measurements?
- Can state-of-the-art methods accurately simulate the full NTF test section, including slots and gaps?

Joint WGs: Buffet and Static Deformation

- Both joint WGs (and the DPW-Scatter group also) have considered a preliminary 2D airfoil case
 - Steady AoA-sweep of the transonic ONERA OAT15A
 - We will present some of this data in the form of a mini-workshop
- The Buffet WG has also considered unsteady buffeting flow over ONERA OAT15A
 - We have a few submitted results for these cases, but not many
- Once the airfoil work is completed, both joint WGs will transition to CRM cases
 - Static Deformation WG: a steady CRM model tested at NASA
 - Buffet WG: a buffeting CRM model tested at JAXA, both rigid buffet and aeroelastic buffet

Working Group Update: Static Deformation

Leadership

- Ben Rider, Boeing Commercial Airplanes
- Stefan Keye, DLR
- Garrett McHugh, NASA Langley
- Third Friday of every month at 10:00 Eastern time
- Approximately 75 people on the distribution list, with an average of 25 attendees in each meeting

Working Group Update: Static Deformation

• Four subcases:

- 1. Steady ONERA OAT15A results
 - Considered by the Buffet and Scatter WGs also
 - Focus of the upcoming mini-workshop
- 2. Validation of the NASA CRM structural FEM
- 3. Steady flow over the flexible NASA CRM model: wing/body
- 4. Steady flow over the flexible NASA CRM model: wing/body/nacelle/pylon
- The CRM work will simulate the NASA LaRC NTF test
- Committee-supplied grids and FEMs
- Focus on computed forces/moments, wing deflection/twist, and sectional Cp distribution

Static Deformation WG: Key Questions

- What level of accuracy can be attained for transonic wing deformation calculations?
- What is the uncertainty in configuration force/moments due to aeroelastic deformation uncertainty?
- What are the most efficient/accurate methods for coupling the aero/structural computations?
 - What are the computational time/accuracy savings between using a full fidelity vs reduced beam structural model?
 - Do modal solutions compare well to direct fluid-structure mapping solutions?
 - Does a full vs symmetry plane solution result in different solutions?
- What accuracy is lost by using a "lower fidelity" aerodynamic analysis method?

• Leadership:

- Hadar Ben-Gida
- Brent Pomeroy
- Daniella Raveh
- Andrea Sansica
- Bret Stanford
- Third Tuesday of every month, 10:00 Eastern
- Approximately 110 people on the distribution list, with an average of 50 attendees in each meeting

• Four subcases:

- 1. Steady ONERA OAT15A results
 - Considered by the Static Deformation and Scatter WGs also
 - Focus of the upcoming mini-workshop
- 2. Unsteady buffeting ONERA OAT15A results
 - Still collecting this data from participants
- 3. Buffeting flow over the rigid JAXA CRM model
- 4. Buffeting flow over the flexible JAXA CRM model

Four subgroups

- 1. URANS (Fulvio Sartor)
- 2. Hybrid RANS/LES (Jeff Housman)
- 3. WMLES and Beyond (Johan Jansson)
- 4. Non-time-domain methods (TBD)

Buffet WG: Key Questions

- What is the current state of the art of beyond-RANS, static-geometry simulations leading up to and beyond buffet?
- What gridding best-practices can be established for scale-resolving simulations?
- What is the state-of-the-art for unsteady CFD coupled with a dynamic structural model, and how accurate are these schemes?

Outline

9:30 Introduction and Motivation

9:40 Working Group Updates

10:15 Mini Workshop

- Steady ONERA OAT15A test case
- Unsteady ONERA OAT15A test case
- Data submission process

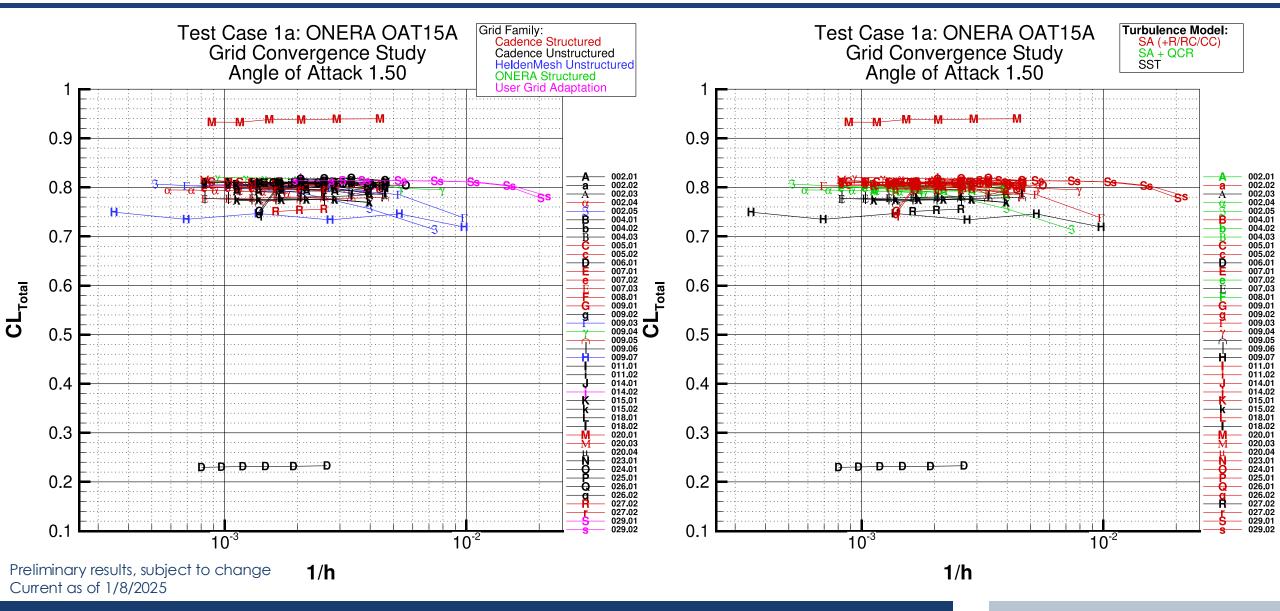
10:50 CRM Look-Ahead

- 11:25 Open Discussion
- 1:00 Bayhill 26 Available for Discussion Until 3:00

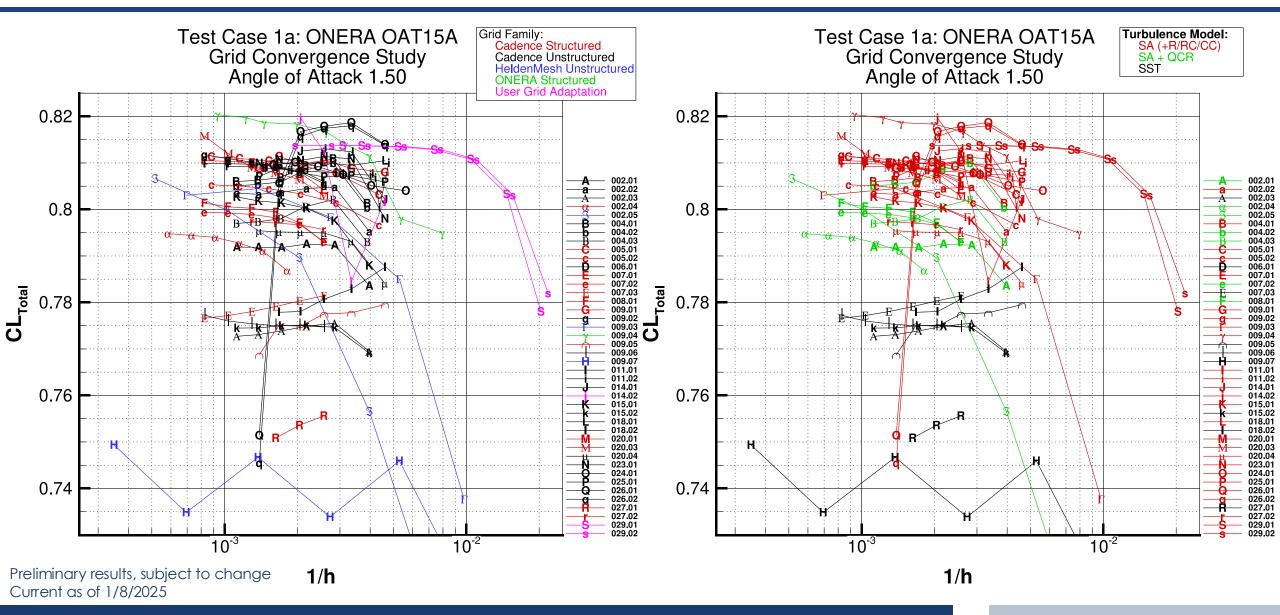
DPW-8/AePW-4 Mini Workshop | SciTech 2025

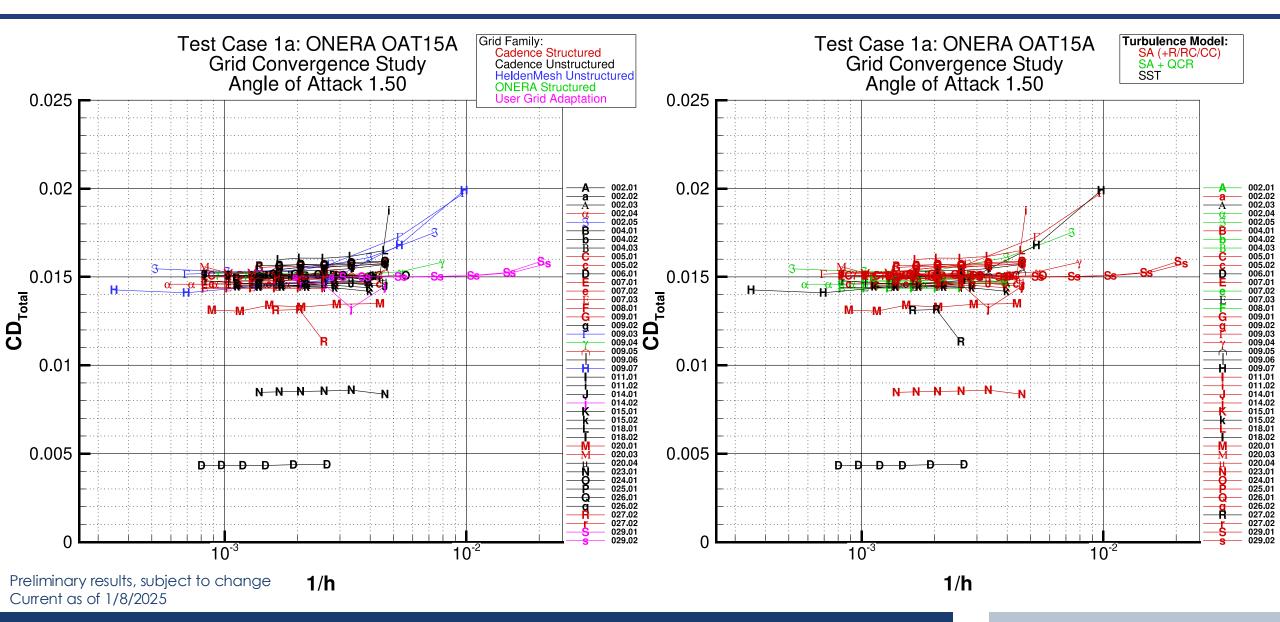
Steady ONERA OAT15A Test Case

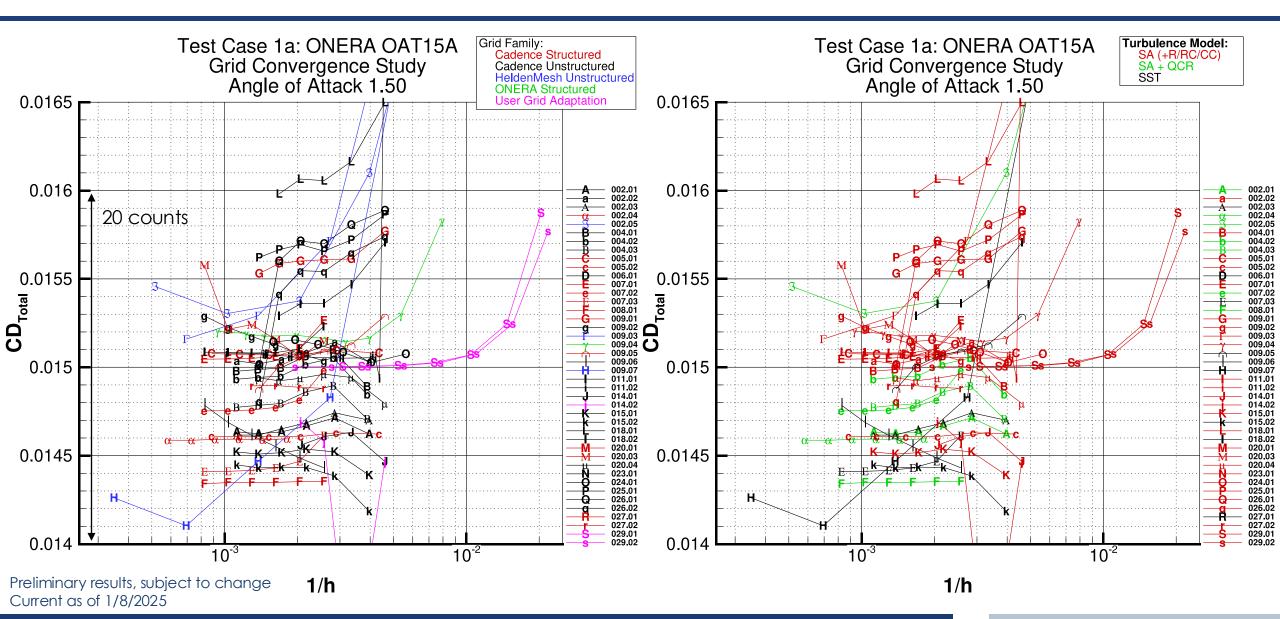
- Validation of steady CFD analysis, required
- Users are encouraged to employ best practices
- Settings
 - Steady CFD (e.g., RANS)
 - Prefer some version of SA, multiple turbulence models can be submitted
 - Use periodic boundary conditions for sidewall boundary conditions
- Grids
 - Six-member grid family; four are required, six are desirable
 - Encourage use of committee-supplied grids; user-generated grids are acceptable
 - Three committee-supplied once-cell-wide grid topologies are provided
- Conditions
 - Mach 0.73, $Re_c=3m$ (based on chord length), $T_{static}=271$ K (487.8 R)
 - Alpha: 1.36, **1.50**, 2.50, 3.00, **3.10**
 - Experimental conditions (for reference): P_{total}=102.4 kPa; P_{static}=71.8 kPa

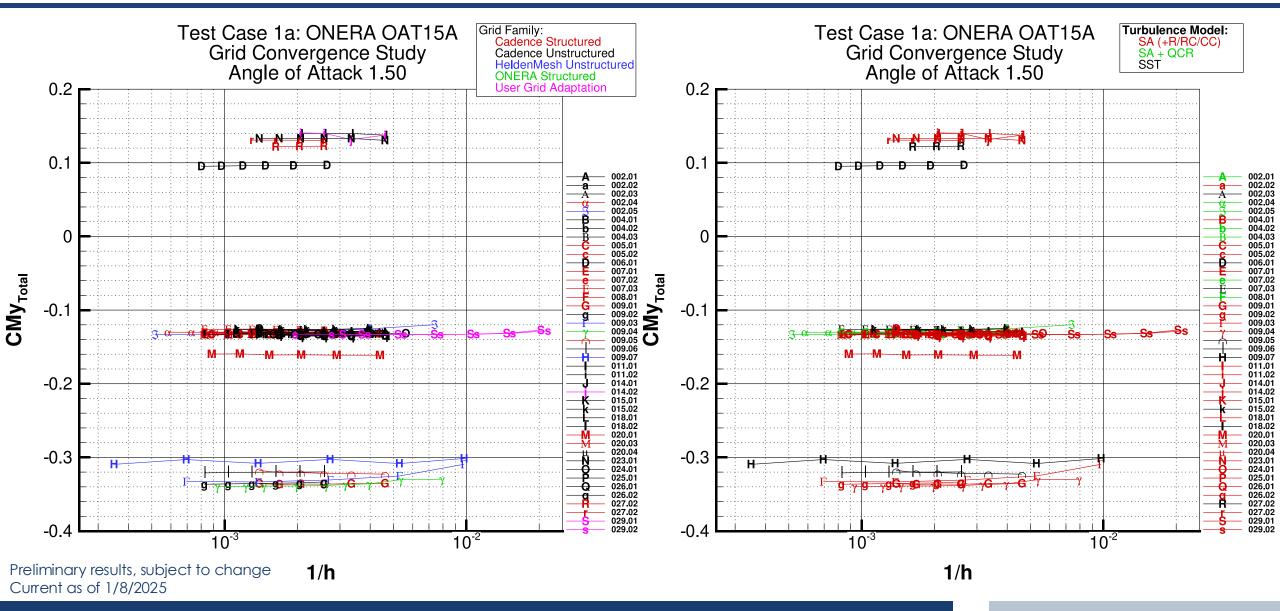


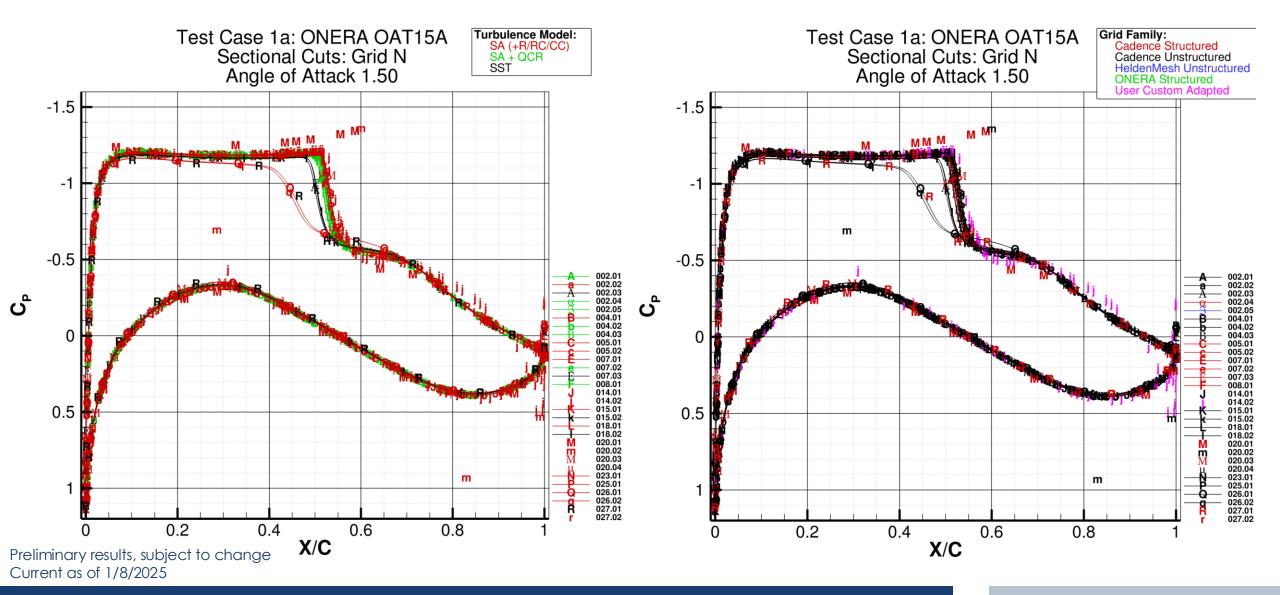
Jaquin, et al. "Experimental Study of Shock Oscillation over a Transonic

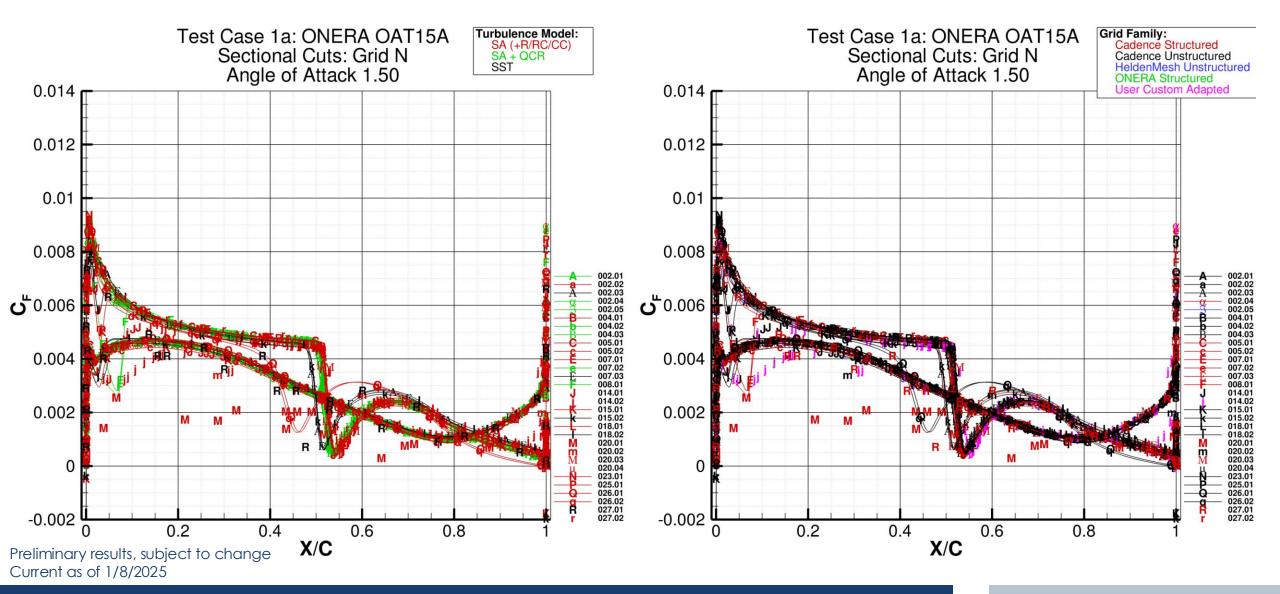

ONERA OAT15A C_L **Convergence:** $\alpha = 1.5^{\circ}$

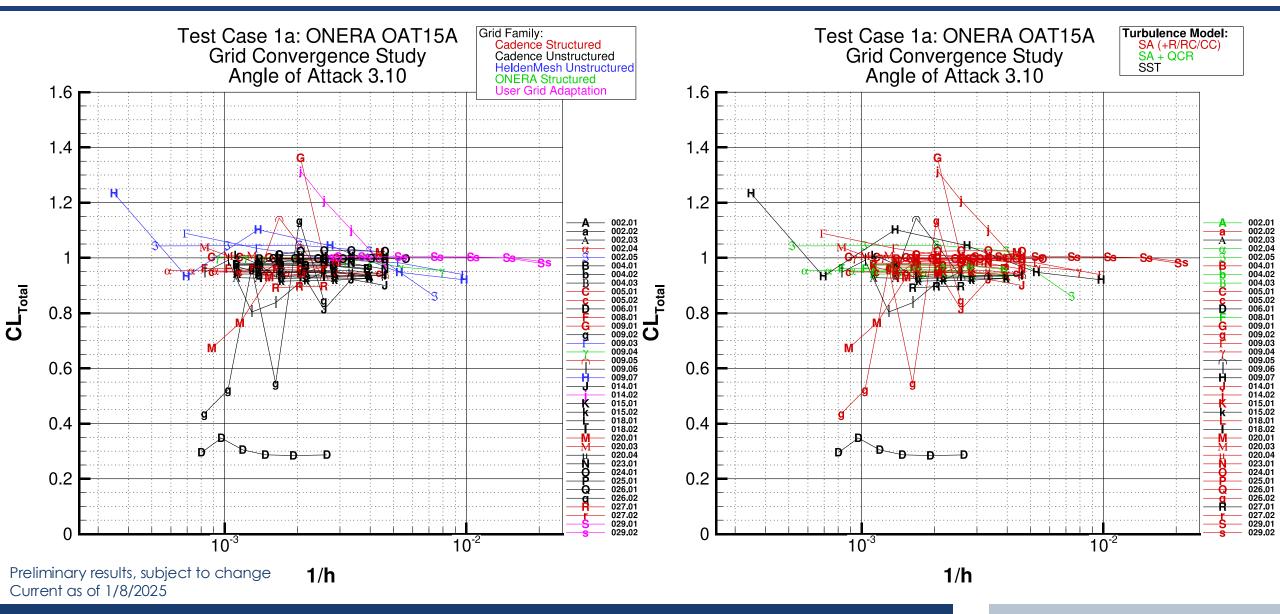

ONERA OAT15A C_L **Convergence:** $\alpha = 1.5^{\circ}$

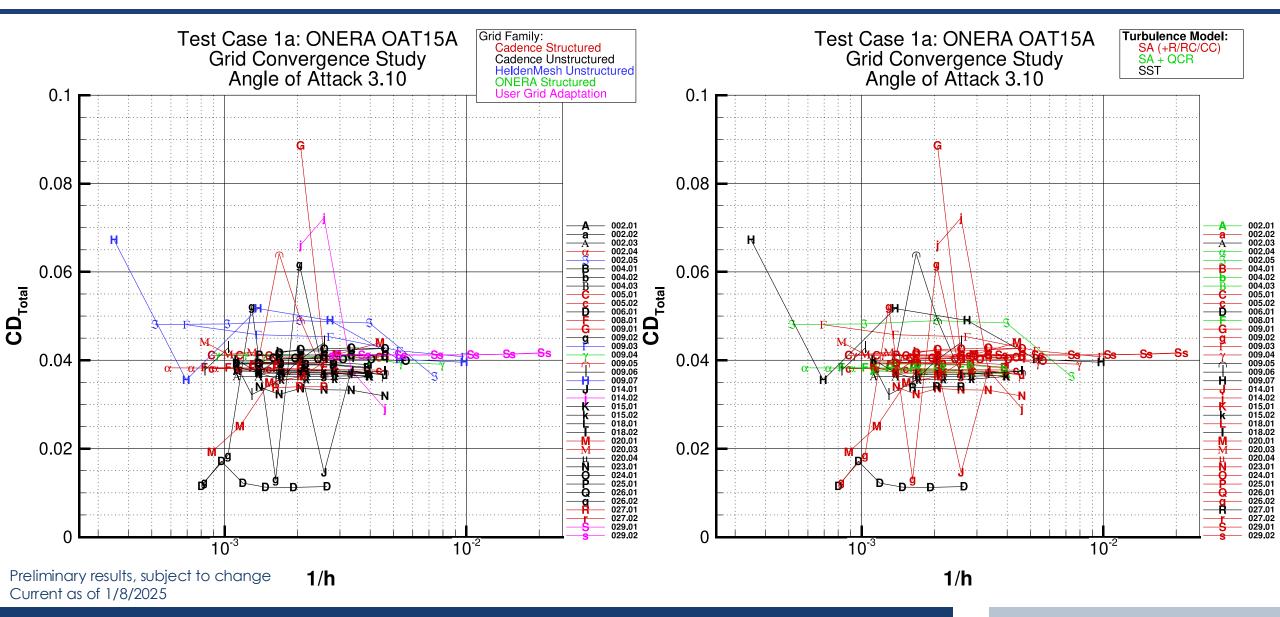

ONERA OAT15A C_D **Convergence:** $\alpha = 1.5^{\circ}$

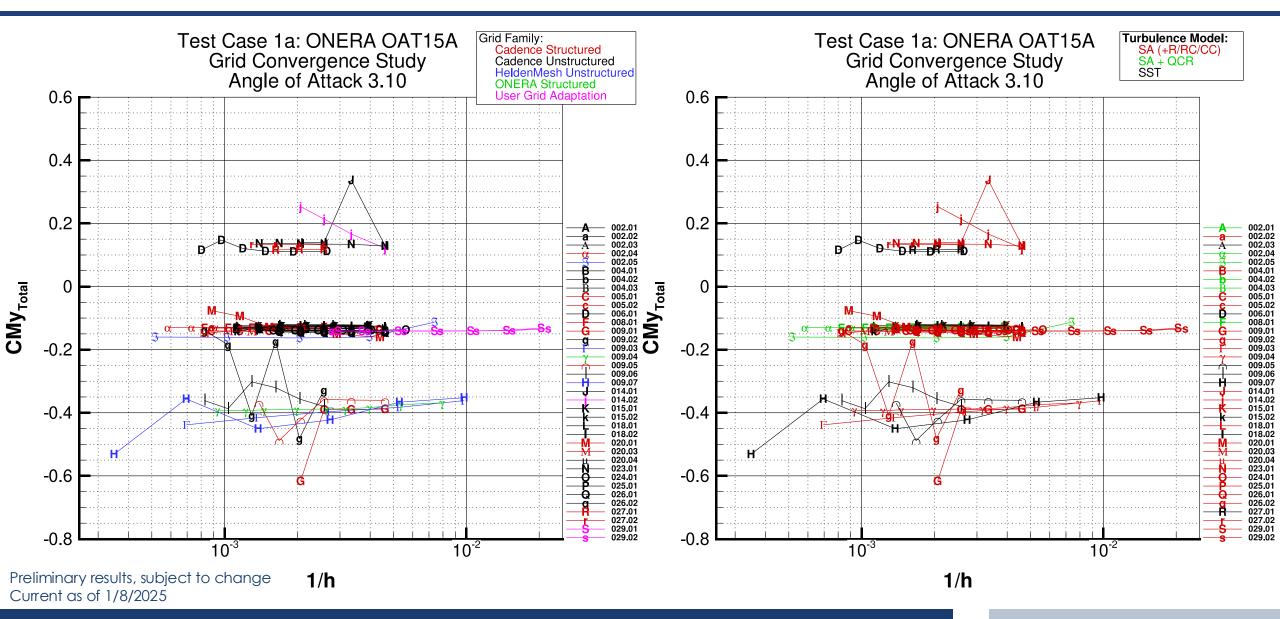

ONERA OAT15A C_D **Convergence:** $\alpha = 1.5^{\circ}$

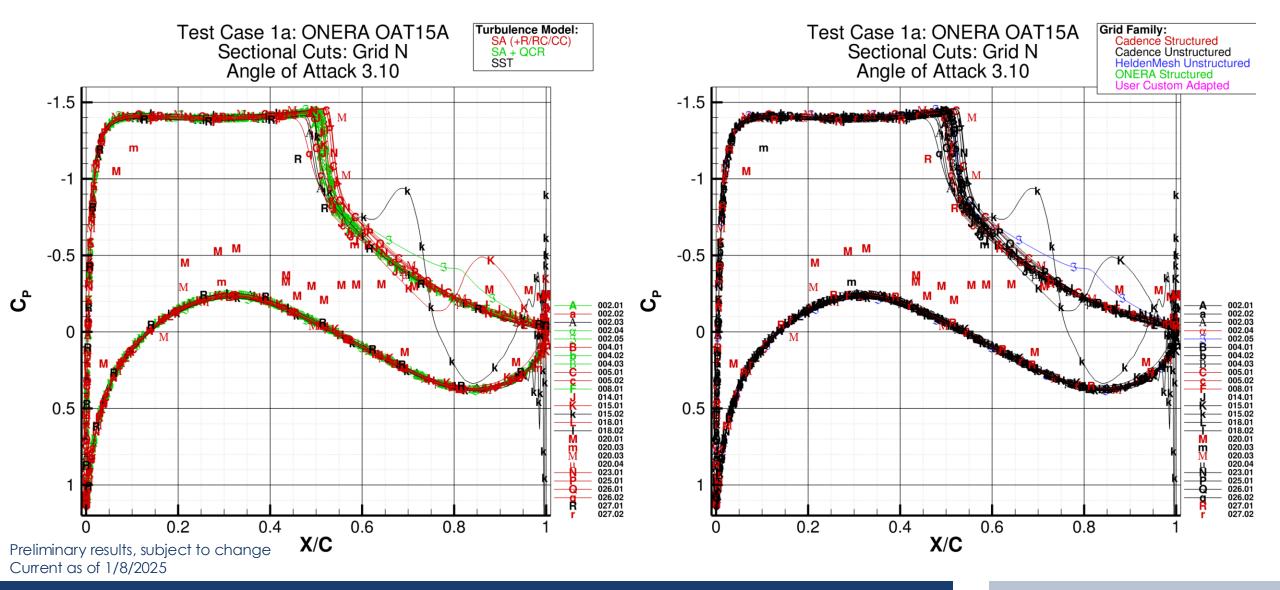

ONERA OAT15A C_M **Convergence:** $\alpha = 1.5^{\circ}$

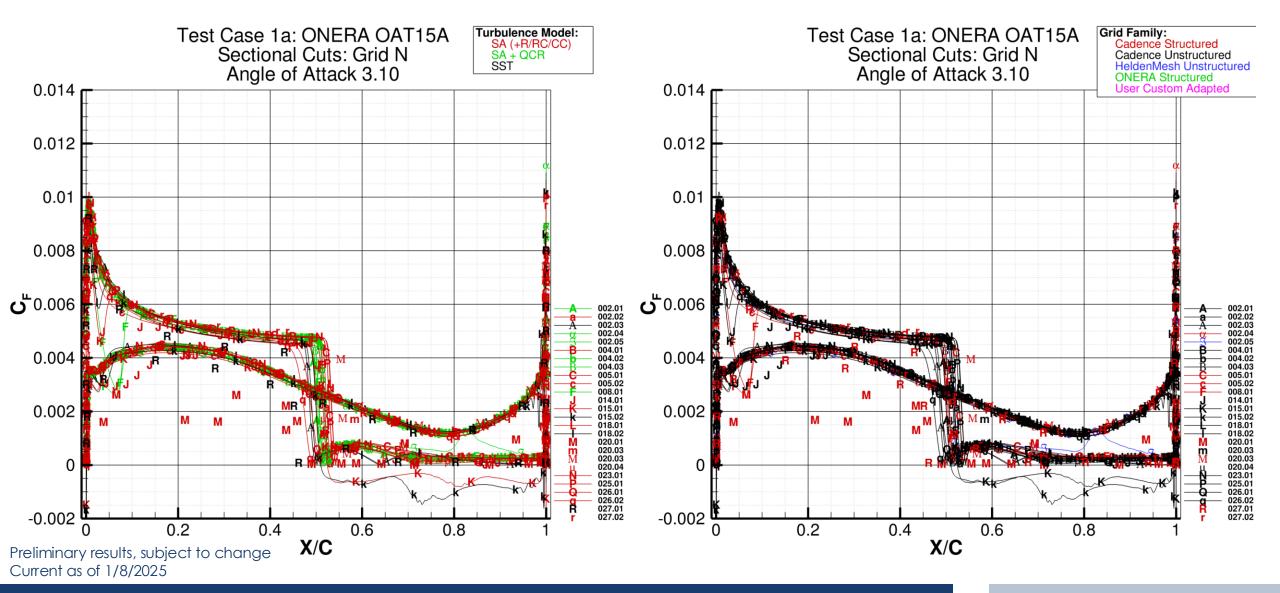

ONERA OAT15A Cp Sectional Cuts: $\alpha = 1.5^{\circ}$

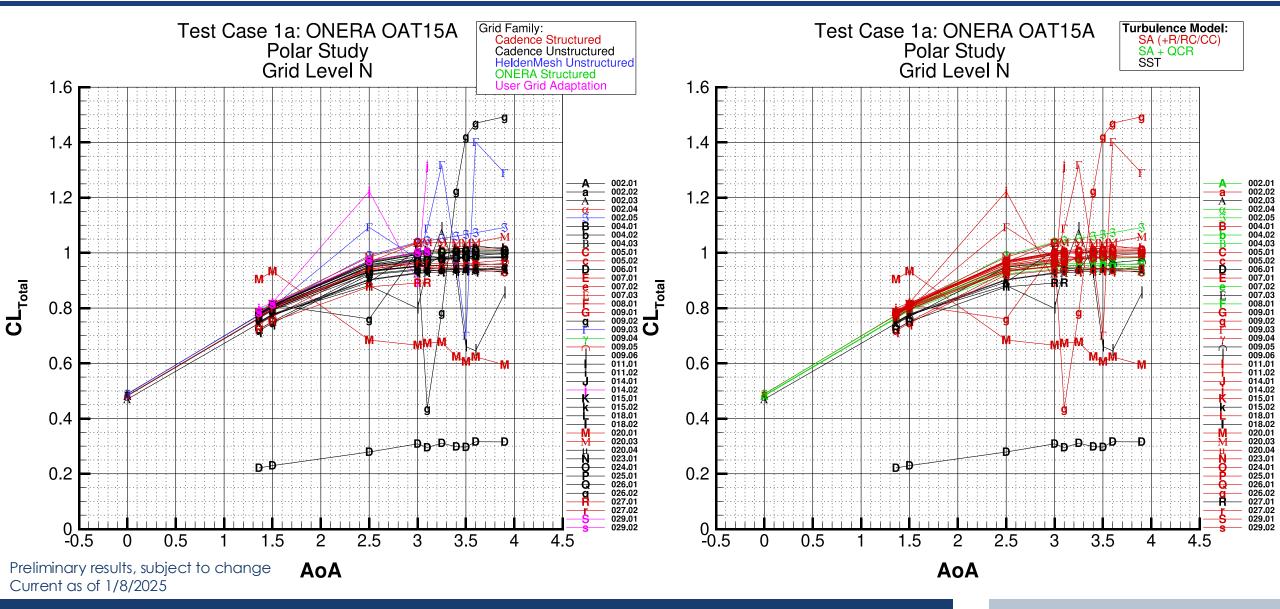

ONERA OAT15A Cf Sectional Cuts: $\alpha = 1.5^{\circ}$

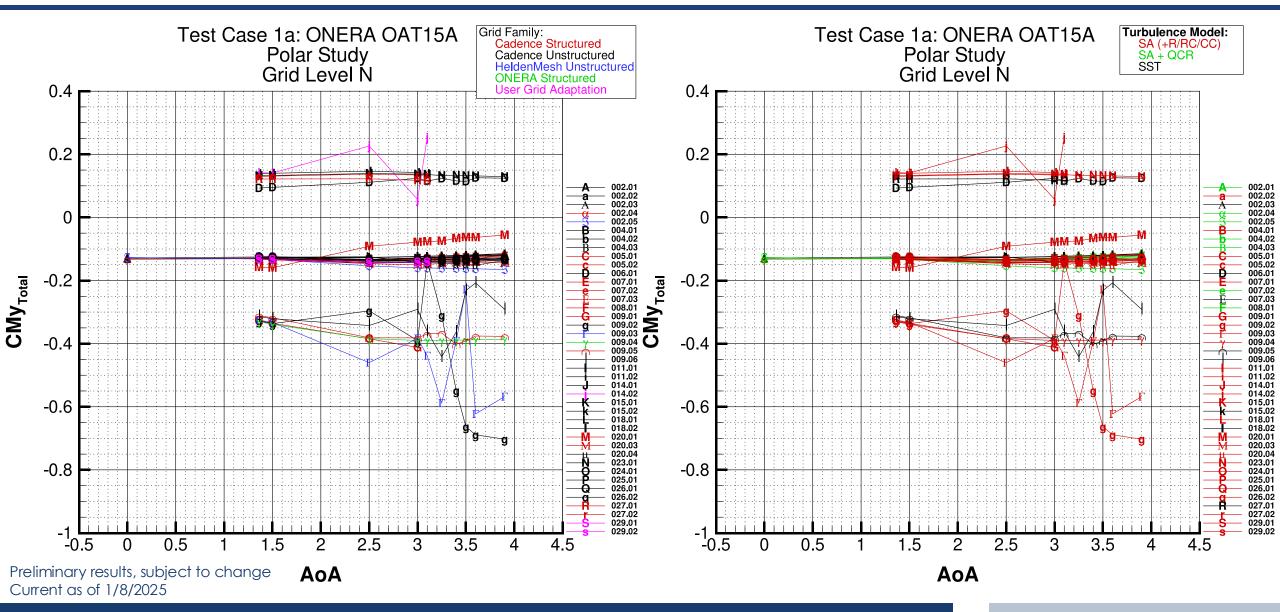

ONERA OAT15A C_L **Convergence:** $\alpha = 3.1^{\circ}$

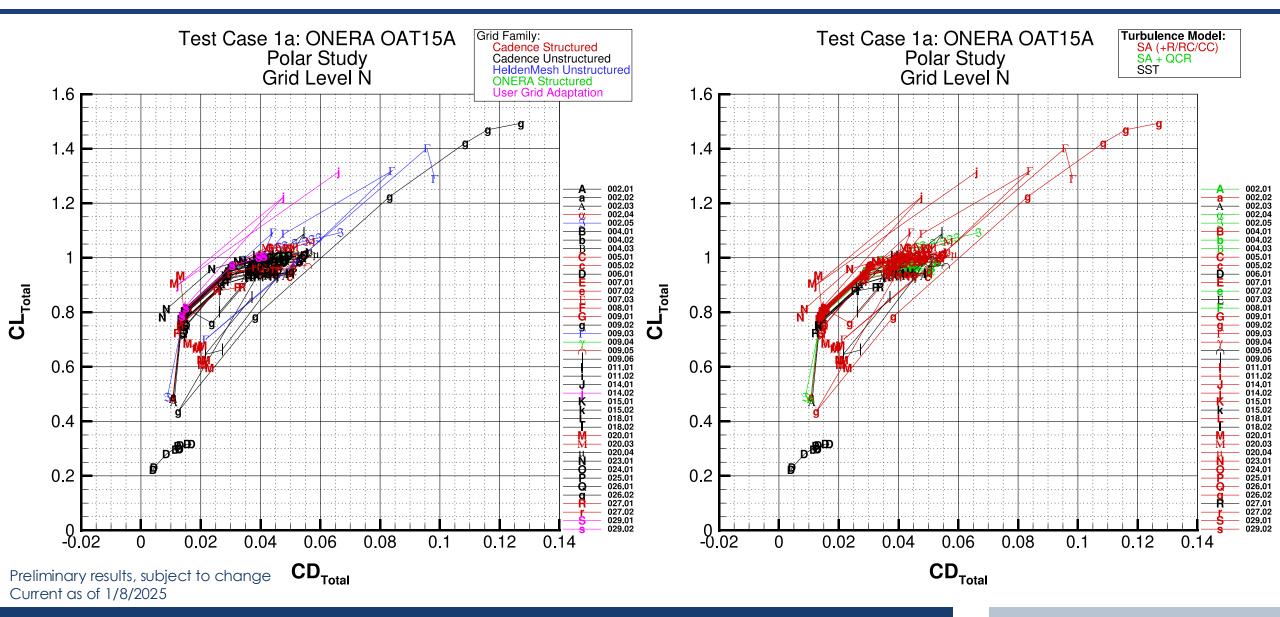

ONERA OAT15A C_D **Convergence:** $\alpha = 3.1^{\circ}$


ONERA OAT15A C_M **Convergence:** $\alpha = 3.1^{\circ}$

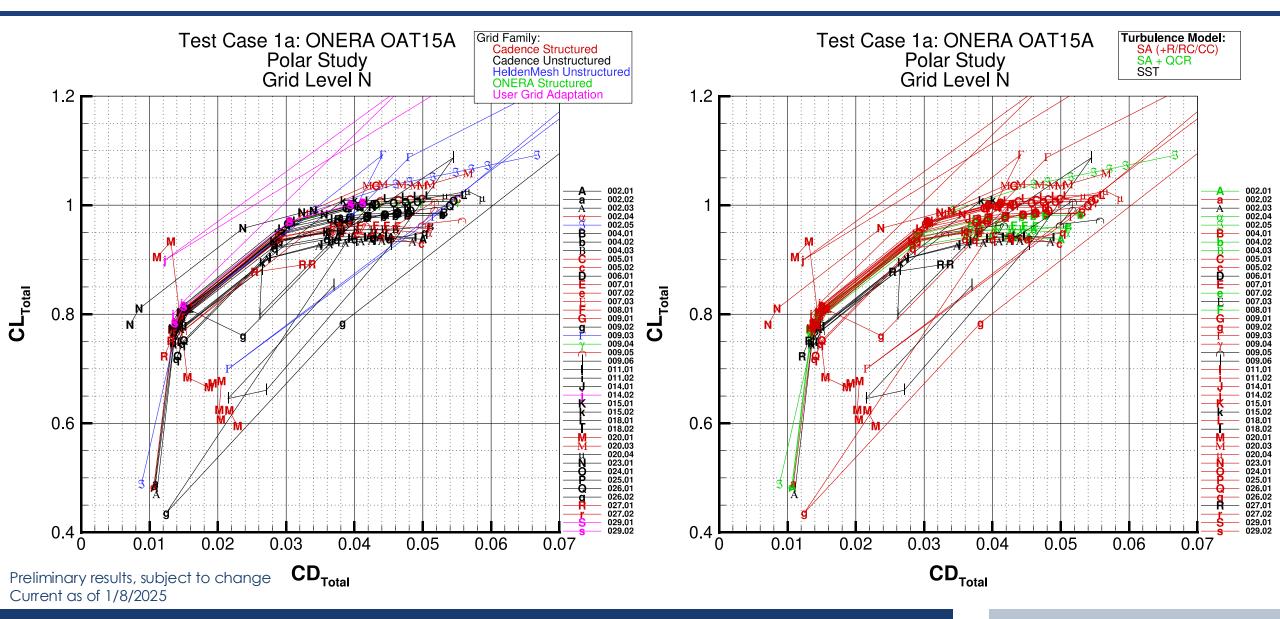

ONERA OAT15A Cp Sectional Cuts: $\alpha = 3.1^{\circ}$


ONERA OAT15A Cf Sectional Cuts: $\alpha = 3.1^{\circ}$

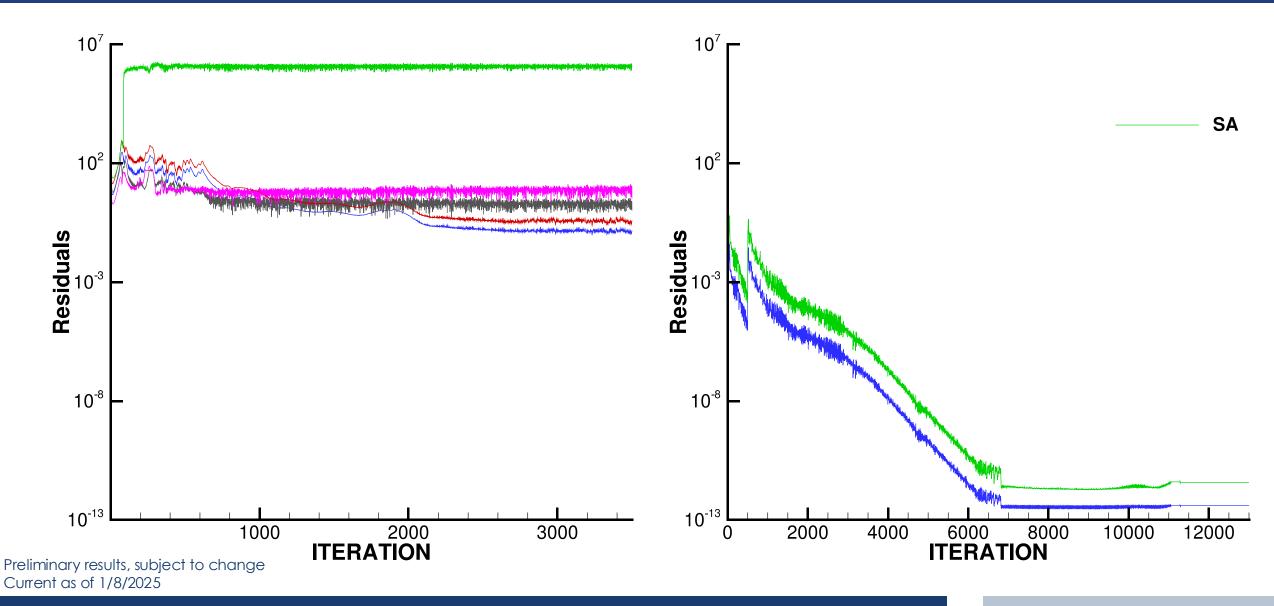

ONERA OAT15A $C_L - \alpha$ **Polar: Finest Mesh**



ONERA OAT15A $C_M - \alpha$ **Polar: Finest Mesh**

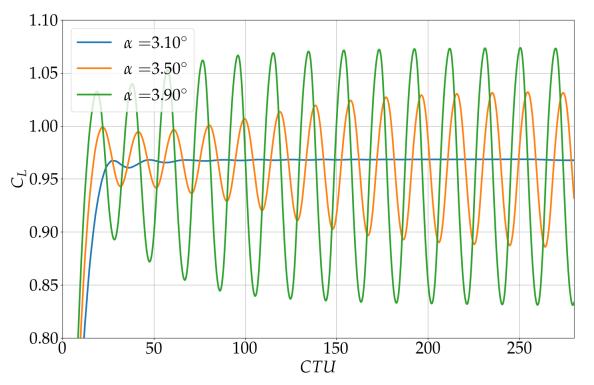


ONERA OAT15A $C_L - C_D$ **Polar: Finest Mesh**



ONERA OAT15A $C_L - C_D$ **Polar: Finest Mesh**

Source of Scatter: Residual Convergence

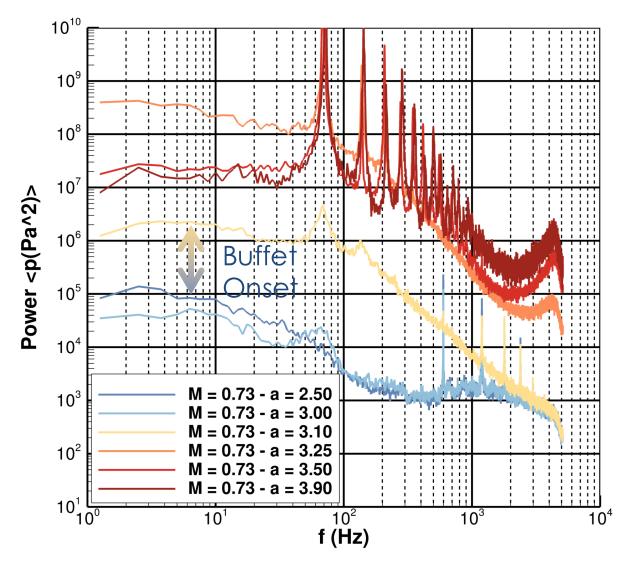

ONERA OAT15A Buffet Test Case: Overview

Extension of steady ONERA OAT15A

- Validation of unsteady CFD analysis
- RANS and unsteady data required from 3.25 to 3.90 deg
- Users encouraged to employ best practices

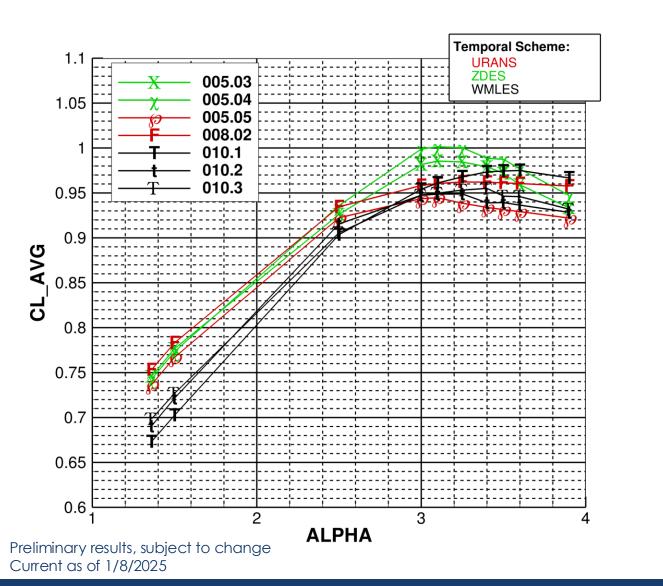
Analyses

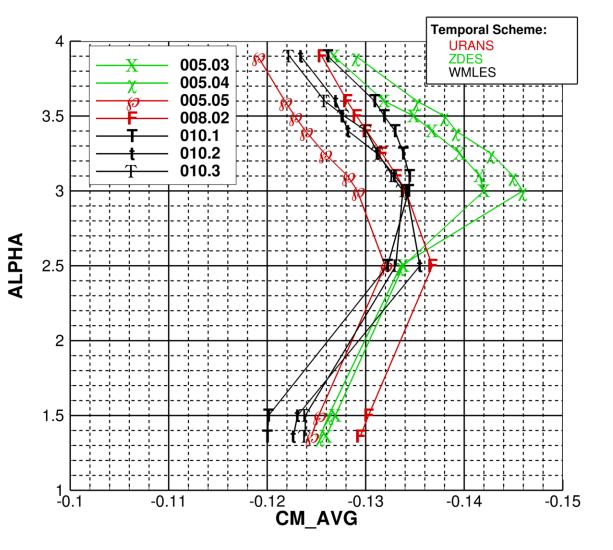
- Sensitivity to time-integration parameters, grid resolution, turbulence model
- Buffet onset angle of attack
- Spectral content and frequencies
- Preliminary data thus far
 - Limited data set available today
 - All data due February 14

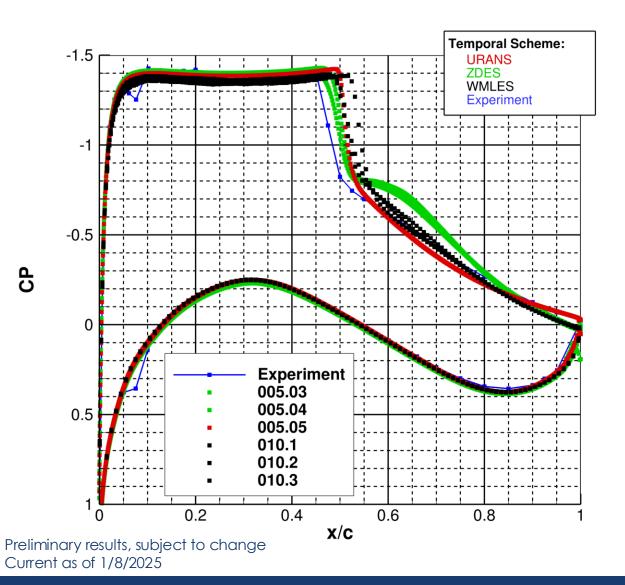

ONERA OAT15A Buffet Test Case: Experiment

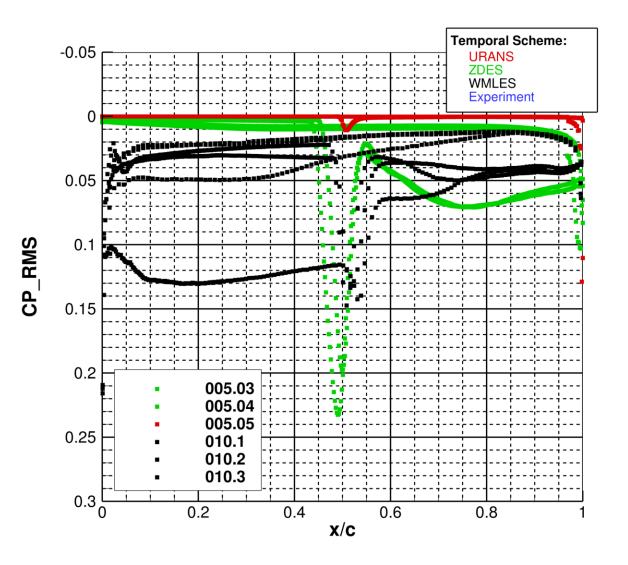
Rich experimental data set

- ONERA S3Ch wind tunnel
- Kulites at multiple chordwise locations
- Availability of two-dimensional data, including all requisite corrections


Buffet onset observed near 3.1 deg


- Increased spectral power
- Similar peak frequencies for subsequent angles of attack


ONERA OAT15A Buffet Test Case: First Look F&M



ONERA OAT15A Buffet Test Case: First Look CP

GitHub

- Leverage experience from High-Fidelity CFD Workshop
- One stop shop for all DPW-centric and hybrid groups data
 - Improves version control
 - Ensures all committee members are looking at the most recent data
 - Facilitates easy plotting for the committee
- Public and outward-facing
 - Top-level README.md identifies institutions, individuals, and codes
 - All data are freely downloadable

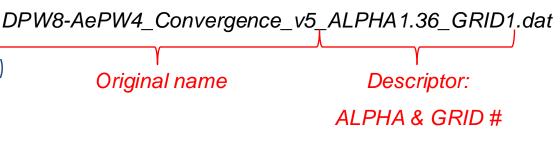
Code 🕢 Issues 👫 Pull requ	o / DPW8-Scatter ests 1 ⓒ Actions 🗄 Projects 🕮 Wiki 🔅	Q Type [] to search) Security ⊻ Insights 🕸 Sett	ings	11 🖻 😂
DPW8-Scatter (Public)		☆ Edit Pins ▼ ③ Watch 2	י ⁹ ני Fork ד י מי	Star 3 -
🐉 main 👻 🐉 4 Branches 🛇 T	C Go to file	t + <> Code -	About	愈
 galbramc Merge pull request # .github/workflows 	14 from Drag-Prediction-Workshop/galbram 🚥 9670 Fix issues with test scripts	d99 · 19 hours ago 🕚 53 Commits	This is similar to the traditionapproach for transonic flow geometry. This group will c identifying the reasons for	on a static oncentrate on
TestCase1a	Update DPW8-AePW4_ForceMoment_v5	5.dat 19 hours ago	that was observed in DPW-	·VII.
tests	Update checks, hopefully for the last time	e last week	☐ Readme -∿ Activity	
🗋 .gitignore	Initial commit	2 months ago	E Custom properties	
README.md	Initial commit	2 months ago	☆ 3 stars⊙ 2 watching	
		P	양 5 forks Report repository	

GitHub

Data Submission Instructions

- https://aiaa-dpw.larc.nasa.gov/Forms/GitHubSubmissionSlides.pdf

Scatter Reduction WG


TestCase1a

- 001_AeroCompanyX
 - README.md (notes about submissions)
 - 01_CFDcode_Cadence_SA_etc.
 - DPW8-AePW4_ForceMoment_v5.dat
 - DPW8-AePW4_Convergence_v5.dat
 - 🛰 a DPW8-AePW4_SectionalCuts_v5.dat
 - 02_CFDcode_Cadence_SST_etc.
 - 03_ CFDcode_Helden_SA_etc.
 - 04_ CFDcode_Onera_SA_etc.
- 002_UniversityX
 - README.md (notes about submissions)
 - 01_CFDinHouse_CustomGrid_SA
 - 02_CFDinHouse_CustomGrid_SA-RC
 - 03_OtherCode_CustomGrid_SA-RC

Please use supplied file names to ease post processing.

Please split future submissions of <u>Convergence</u> and <u>SectionalCuts</u> into individual files for each simulation (append this descriptor after the original file name)

Outline

9:30 Introduction and Motivation

9:40 Working Group Updates

10:15 Mini Workshop

10:50 CRM Look-Ahead

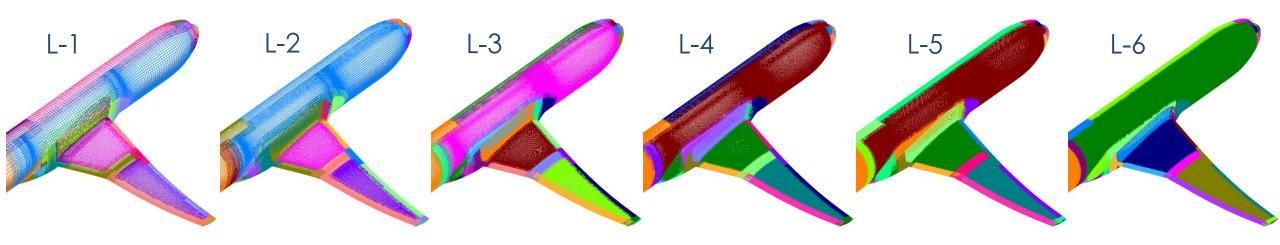
- Grid requirements and updates
- Discussion of available experimental data
- Discussion of available finite element models

11:25 Open Discussion

1:00 Bayhill 26 Available for Discussion Until 3:00

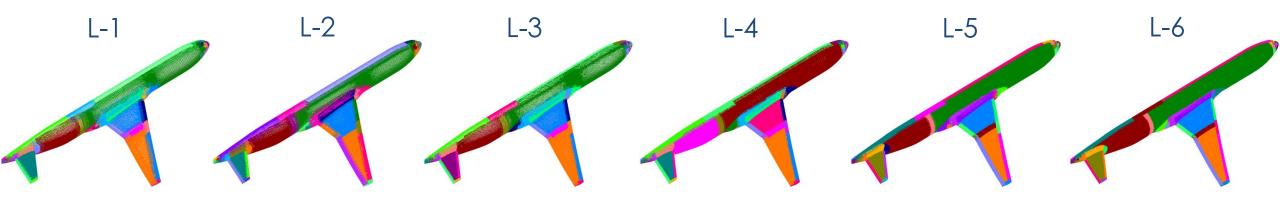
Grid Requirements and Update

- Committee developed gridding guidelines leveraging historic knowledge
 - Six-member grid family
 - Progressively finer surface grid and decreased y⁺
 - Consistent with DPW-7
 - Different viscous grid spacing for various Reynolds numbers
- Grids from NASA Ames, Helden, and Cadence
- User-generated grids are welcomed
 - Requested to provide these grids for the community to use
 - Recommend to follow the gridding guidelines, but not required


NASA Ames – Overset

Configuration	Wing Loading a (deg.)	L1	L2	L3	L4	L5	L6	
CRM Wing/Body	2.50			Х				× - surf. & vol. grids
CRM Wing/Body	2.75			Х				- connectivity data
CRM Wing/Body	3.00	×	×	×	×	×	×	- various input files * (<mark>flow-solver ready</mark>)
CRM Wing/Body	3.25			Х				
CRM Wing/Body	3.50			Х				 x - surf. + vol. grids - various input files *
CRM Wing/Body	3.75			Х				
CRM Wing/Body	4.00			Х				x to be completed
CRM Wing/Body	4.25			Х				* - component loads
JAXA Wing/Body/Tail	4.84	×	×	×	×	×	×	computation
JAXA Wing/Body/Tail	5.89			×				(FOMOCO)
JIG Wing/Body	0.0	×	×	×	×	×	×	- flow solver b.c. (OVERFLOW)
JIG Wing/Body/Tail	0.0			×				
JIG Wing/Body/Nacelle/Pylon	0.0	Х	Х	×	Х	Х	Х]

Mesh Family for Jig Wing/Body



maxa - max dihedral angle maxe - max cell size npmin - min #pts on discretized BREP edge maxsr - max stretching ratio

L	maxa (deg)	maxe	npmin	maxsr	Ds wall (x 10 ⁻⁴)	# grid	# Surf. Pt (M)	# Total Vol. Pt (M)
1	5.0	15.0	9	1.19	5.423	67	0.13	11.7
2	4.5	10.0	13	1.135	3.615	68	0.25 (x1.9)	27.3 (x2.3)
3	4.0	6.667	17	1.10	2.410	73	0.46 (x1.8)	62.6 (x2.3)
4	3.5	4.444	21	1.07	1.607	73	0.88 (x1.9)	160.0 (x2.6)
5	3.0	3.0	25	1.05	1.071	74	1.65 (x1.9)	409.0 (x2.6)
6	2.5	2.0	29	1.04	0.714	76	3.45 (x2.1)	1053.7 (x2.6)

Mesh Family for JAXA Wing-Body Tail α =4.84°

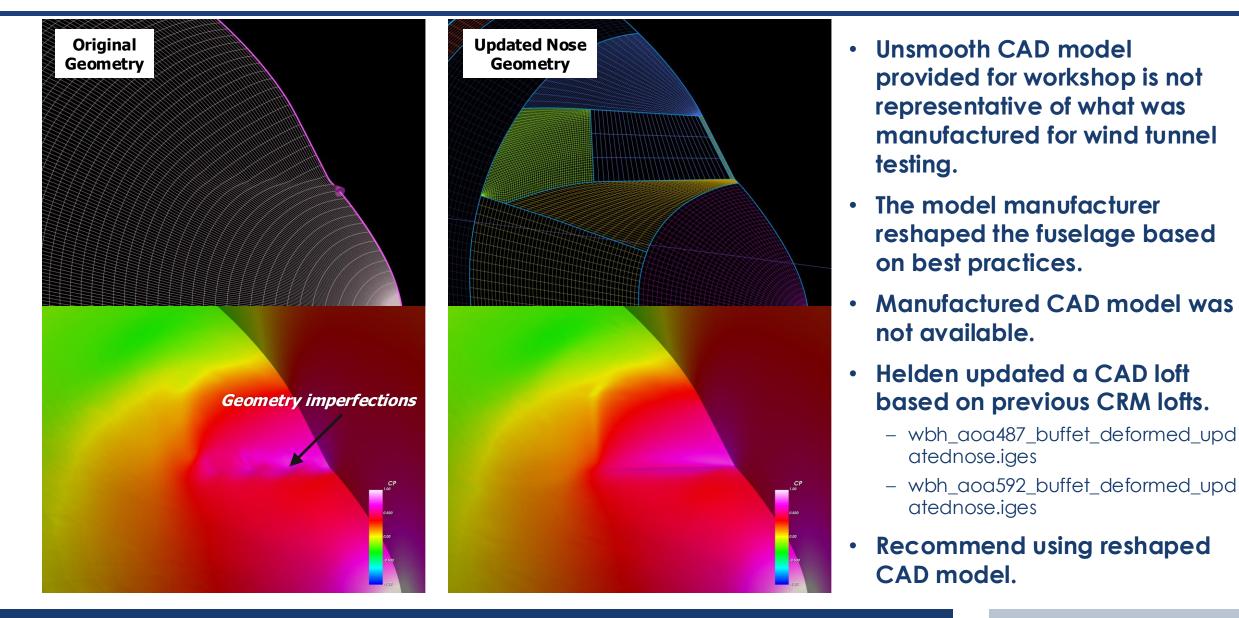
maxa - max dihedral angle maxe - max cell size npmin - min #pts on discretized BREP edge maxsr - max stretching ratio

L	maxa (deg)	maxe	npmin	maxsr	Ds wall (x 10 ⁻⁴)	# nb grid	# Surf. Pt (M)	# Total Vol. Pt (M)
1	5.0	15.0	9	1.19	5.423	81	0.21	16.5
2	4.5	10.0	13	1.135	3.615	80	0.39 (x1.9)	39.8 (x2.4)
3	4.0	6.667	17	1.10	2.410	86	0.74 (x1.9)	96.0 (x2.4)
4	3.5	4.444	21	1.07	1.607	85	1.38 (x1.9)	241.6 (x2.5)
5	3.0	3.0	25	1.05	1.071	93	2.72 (x2.0)	647.8 (x2.7)
6	2.5	2.0	29	1.04	0.714	116	5.37 (x2.0)	1574 (x2.4)

Helden – Meshing Status / Overview

Using process from AIAA HLPW5 to develop best mesh characteristics

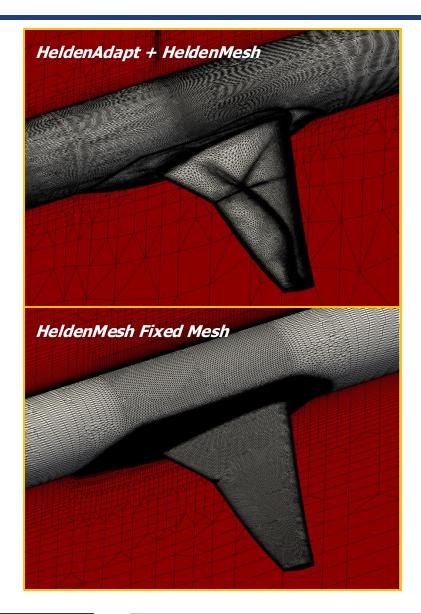
- Uses spatial adaption to identify regions for refinement (surface and volume) & overall mesh characteristics
- Detailed meshing refinement studies


		DPW-8 / A	ePW-4 Grid M	atrix				Grid D	ensity			G	rid Sca	le
	WG	Configuration	Wing Loading	Rey#	Delivery	L1: Tiny	L2: Coarse	.3: Medium	L4: Fine	L5: eXtra	L6: Ultra	Full (inch)	Model	Units
1	All	OAT15A (2D airfoil)	N/A	TBD	Summer '24	х	x	x	Х	x	x	х	-	inch
2	Sctr	Wing/Body	2.50 Alpha LoQ	5M (Cref=275.8)	(Spring) '25	?	?	x	?	?	?	х	-	inch
3	Sctr	Wing/Body	2.75 Alpha LoQ	5M (Cref=275.8)	(Spring) '25			x				х	-	inch
4	Sctr	Wing/Body	3.00 Alpha LoQ	5M / 20M?	Nov/Dec '24	х	x	x	х	x	x	х	-	inch
5	Sctr	Wing/Body	3.25 Alpha LoQ	5M (Cref=275.8)	(Spring) '25			x				х	-	inch
6	Sctr	Wing/Body	3.50 Alpha LoQ	5M (Cref=275.8)	(Spring) '25			x				х	-	inch
7	Sctr	Wing/Body	3.75 Alpha LoQ	5M (Cref=275.8)	(Spring) '25			x				х	-	inch
8	Sctr	Wing/Body	4.00 Alpha LoQ	5M (Cref=275.8)	(Spring) '25	?	?	x	?	?	?	х	-	inch
9	Sctr	Wing/Body	4.25 Alpha LoQ	5M (Cref=275.8)	(Spring) '25			x				х	-	inch
10	Bft	Wing/Body/Tail(iH=0)	4.84 Alpha JAXA	5M (Cref=275.8)	Nov/Dec '24	х	x	x	х	x	x	х	<mark>2.16%</mark>	mm
11	Bft	Wing/Body/Tail(iH=0)	5.89 Alpha JAXA	5M (Cref=275.8)	Nov/Dec '24			X				х	<mark>2.16%</mark>	mm
12	Def	Wing/Body	Jig (no load)	5M (Cref=275.8)	Nov/Dec '24	х	x	x	Х	x	x	х	2.70%	inch
13	Bft	Wing/Body/Tail(iH=0)	Jig (no load)	5M (Cref=275.8)	(TBD)			x				х	2.16%	mm
14	Def	Wing/Body/Nacelle/Pylon	Jig (no load)	5M (Cref=275.8)	(Spring) '25	х	x	x	Х	x	х	х	2.70%	inch

Helden Meshes for Rows 4, 10, 11, and 12 available shortly.

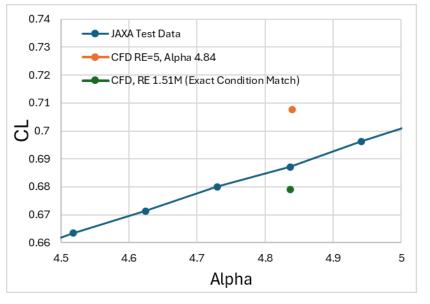
Used to define mesh family characteristics

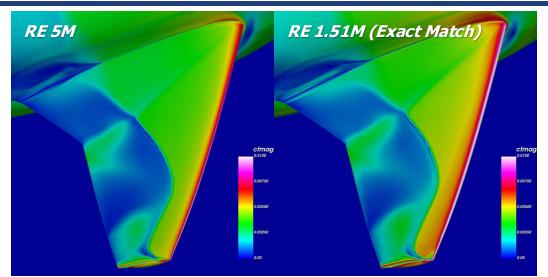
Nose Geometry Modifications Required

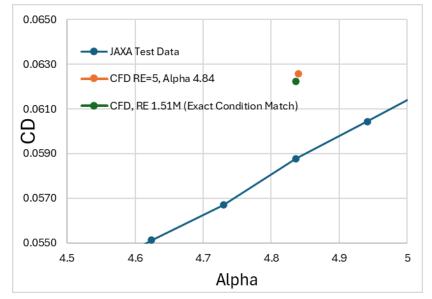


Using Adaptation to Inform Mesh Development

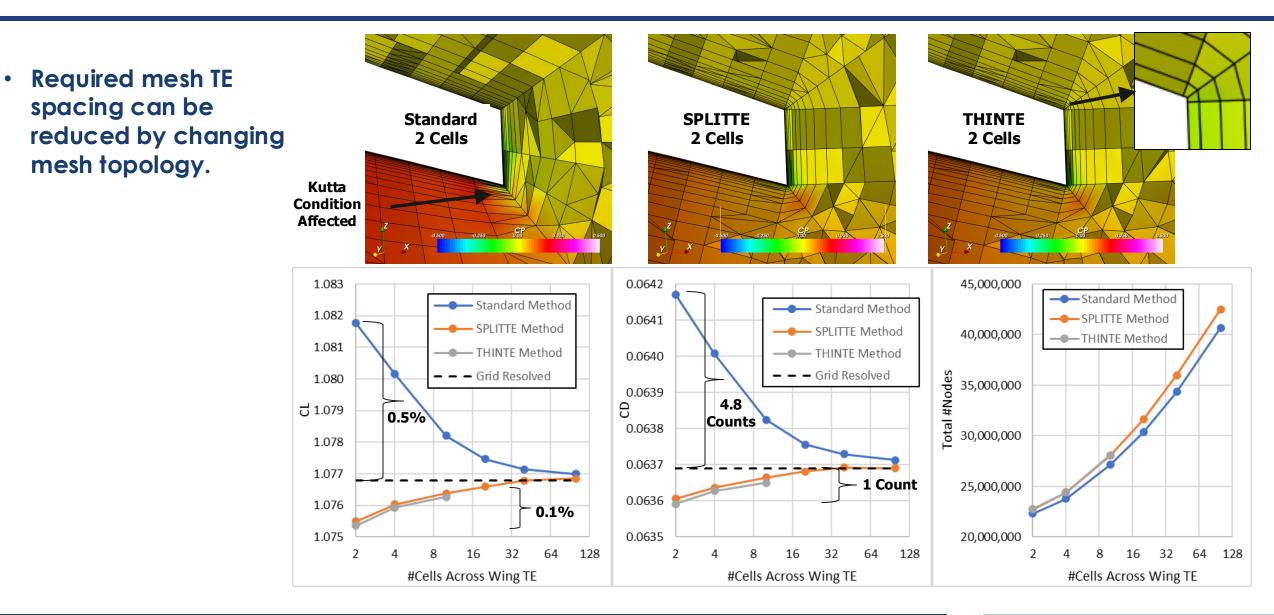
HeldenAdapt process used to generate solution adaptive grids


- Process takes an existing flow solution and converts it to a mesh spacing field
 - Uses Mach Hessian, so you are adding grid wherever the 2nd derivative of Mach is high
- New mesh built from scratch using HeldenMesh with hybrid elements in boundary layer and high anisotropic stretching
- These grids will be used to find what the grid resolved CL and CD are and to tell us how to design the fixed mesh series
 - Where to put mesh and to what levels
- Fixed mesh refinement series will be created for Alpha 4.84 Wing, Alpha 5.8 Wing, and Jig Wing
 - Built without adaption but refined in generalized regions
 - Areas of curvature
 - Leading edges / trailing edges
 - Wing upper surface
 - Wing/fuselage fairing
 - Adapted meshes are impractical for Jig Wing (where wing shape and shock location is variable)




Impact of Re on Flow Characteristics

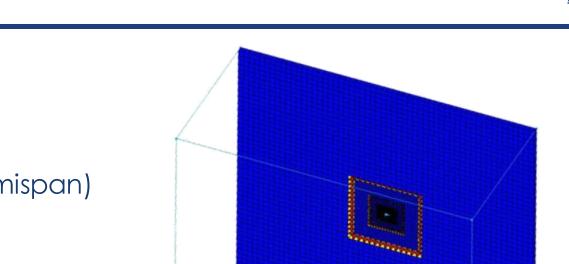
- USM3DME run at the exact test conditions (RE 1.51M) vs. CFD conditions (RE 5M)
- Results show differences in shock location, lift, and skin friction contours
 - ∆CL = 0.0284 (4%)
 - $\Delta CD = -0.0003 (0.4\%)$
- Re effects on lift are significant



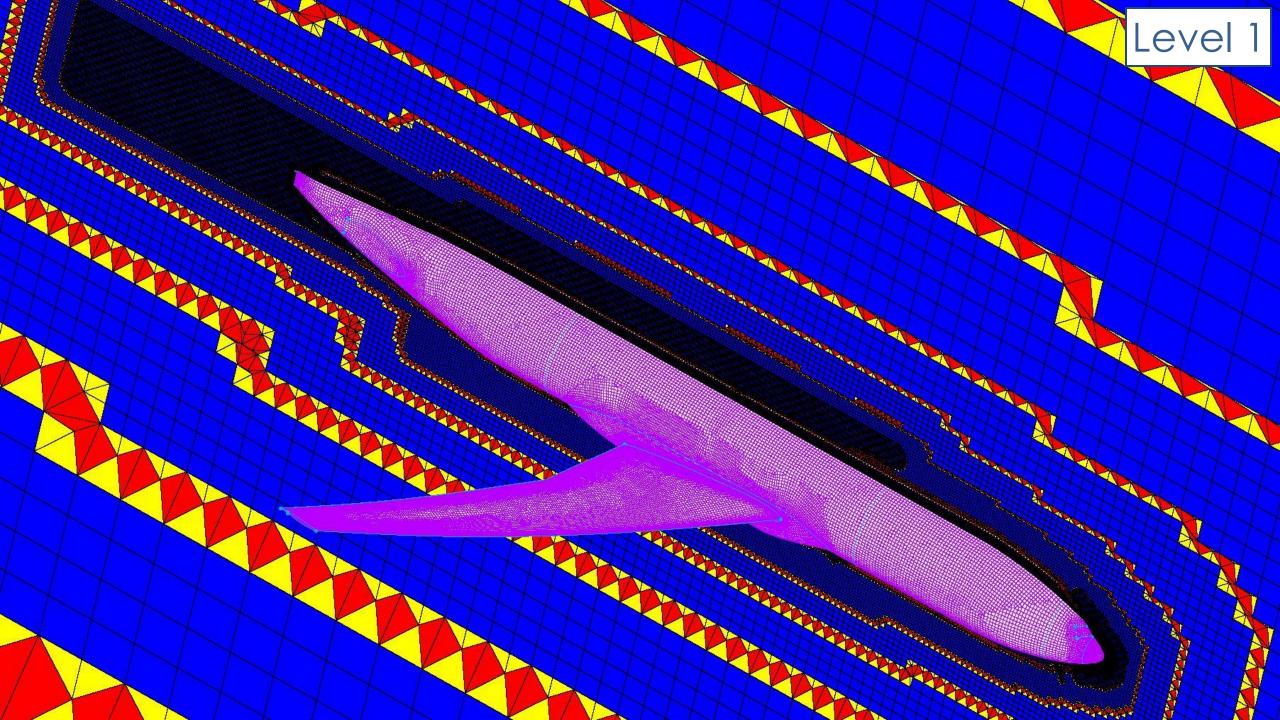
AIAA HLPW5 Relevant Finding

Cadence

Configuration	Wing Loading a (deg.)	L1 y+=1	L2	L3	L4	L5	L6	
CRM Wing/Body	2.50			×				Surf. & vol. grids
CRM Wing/Body	2.75			×				- Completed
CRM Wing/Body	3.00	×	×	×	×	×	×	x - Surf. + vol. grids
CRM Wing/Body	3.25			×				- Preliminary Versions
CRM Wing/Body	3.50			×				× - To be completed
CRM Wing/Body	3.75			×				
CRM Wing/Body	4.00			×				- Grids built in batch via
CRM Wing/Body	4.25			×				Glyph script
JAXA Wing/Body/Tail	4.84	×	×	×	×	×	×	- Grid Formats
JAXA Wing/Body/Tail	5.89			×				(Pointwise, CGNS)
JIG Wing/Body	0.0	×	×	×	×	×	×	
JIG Wing/Body/Tail	0.0			×				
JIG Wing/Body/Nacelle/Pylon	0.0	×	×	×	×	×	×	

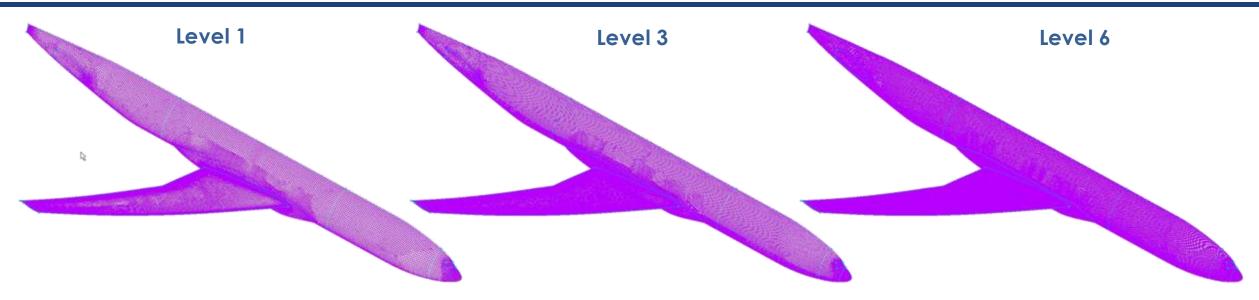

Mesh Family – Characteristics

- Grid Topology: Voxel
- DPW-8 Gridding Guidelines
 - Farfield Size = 115,675in (~100*Semispan)
 - Y+ = 1 @ Level 1
 - Growth Rate: $1.16^{\frac{1}{1.5^{(Level-1)}}}$
 - Constant Layers on Viscous Wall: 2 (Level 1)
 - Viscous Wall Spacing: $\Delta y = \frac{C_{ref}}{Re_c * \sqrt{\frac{C_f}{2}}}$
 - C_{ref} = 278.5in
 - Re_c = 5,000,000


• Cf =
$$x = \frac{0.455}{\ln^2(0.06*Rex)}$$

Re_x = 0.1*Re_c

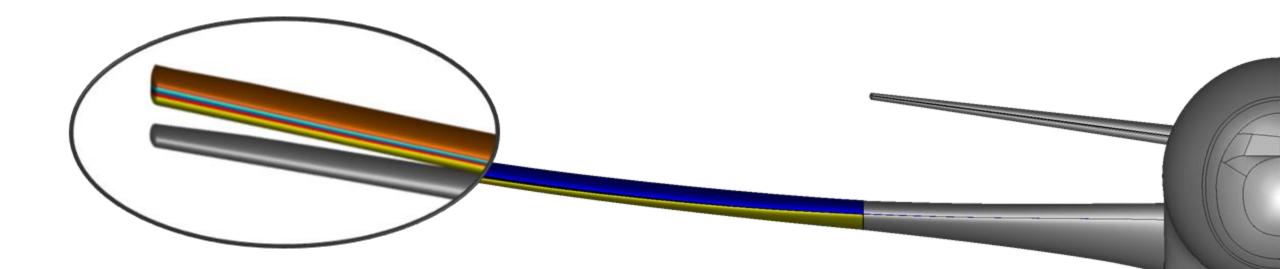
Name	L	Wing/Body ∆y1 (DPW-8)	T-Rex Growth Rate	#∆y1	Refinement Factor (DPW-7)
Tiny (T)	1	0.0011921972	1.160000	2	1.5000
Coarse (C)	2	0.0007947981	1.104007	3	1.3333
Medium (M)	3	0.0005960986	1.068189	4	1.2500
Fine (F)	4	0.0004768789	1.044958	5	1.2000
Extra Fine (X)	5	0.0003973991	1.029752	6	1.1667
Ultra Fine (U)	6	0.0003406278	1.019737	7	



Mesh Family - Wing/Body a=3.0°

-----Surface-

-Volume-


L	Tris (K)	Quads (K)	Cells (K)	Points (K)	Tets (M)	Pyrms (M)	Prisms (M)	Hexes (M)	Cells (M)	Points (M)
1	17.7	230.3	248.0	238.3	8.6	1.5	0.2	18.1	28.4	20.2
2	29.5 (x1.7)	467.1 (x 2.0)	496.6 (x 2.0)	480.6 (x 2.0)	17.3 (x 2.0)	2.9 (x 2.0)	0.5 (x 2.3)	49.8 (x 2.7)	70.5 (x 2.5)	54.0 (x 2.7)
3	33.3 (x 1.1)	802.2 (x 1.7)	835.5 (x 1.7)	817.2 (x 1.7)	30.2 (x 1.7)	5.1 (x 1.7)	1.0 (x 2.1)	123.2 (x 2.5)	159.4 (x 2.3)	130.6 (x 2.4)
4	43.6 (x 1.3)	1271.1 (x 1.6)	1314.7 (x 1.6)	1290.8 (x 1.6)	39.6 (x 1.3)	7.3 (x 1.4)	2.3 (x 2.3)	256.0 (x 2.1)	305.2 (x 1.9)	266.5 (x 2.0)
_		1872.2(x 1.5)					4.1 (x 1.8)	417.8 (x 1.6)	496.9 (x 1.6)	434.6 (x 1.6)
6	66.1 (x 1.1)	2731.7 (x 1.5)	2797.8 (x 1.4)	2761.7 (x 1.5)	89.8 (x 1.4)	15.0 (x 1.4)	7.3 (x 1.8)	752.0 (x 1.8)	864.0 (x 1.7)	776.3 (x 1.8)

Alpha Sweep - Wing/Body Level 3

	r	-Surfac	e		Volume								
	Tris Quads Cells Points					Pyrms	Prisms	Cells	Points				
α = 2.50	3.34E+04	8.02E+05	8.36E+05	8.17E+05	3.01E+07	5.07E+06	9.97E+05	1.23E+08	1.59E+08	1.31E+08			
Delta %	1.20	0.06	0.08	0.06	0.27	0.20	2.17	0.04	0.07	0.05			

Count Variation < 2.5%

- Same model tested in three facilities and five tests
- Extensive database developed for computational and experimental research
 - Wide range of Mach numbers, Reynolds numbers, and alpha
 - Multiple modular components: wing, body, nacelle/pylon, horizontal tail
 - First used for DPW-IV with blind comparisons
- See: M. Rivers, "Wind Tunnel Test Result Summary for the NASA Common Research Model," AVIATION 2023 presentation, available on the DPW experiment website

Data Set	Mach	Re	Alpha	Configuration	Static, Loaded Deformation	PIV	PSP
NTF 197	0.7 to 0.87	5, 19.8, 30	-3 to 12 @ low Re -3 to 6 @ high Re	WB, WBNP, WBTO, WBT-2, WBT+2	Х		
Ames 216	0.7 to 0.87	5	-3 to +12	WB, WBNP, WBTO, WBT-2, WBT+2	Х		
NTF 215	0.7 to 0.87	5, 19.8, 30	-3 to +12 @ low Re -3 to +6 @ high Re	WB, WBNP, WBTO	Х		
NTF 229	0.7 to 0.87	5, 19.8, 30	-3 to +12 @low Re -3 to +6 @ high Re	WB, WBTO		Х	Х
ETW ESWIRP	0.25 to 0.87	5, 19.8, 30	-3 to +12 @ low Re -3 to +6 @ high Re	WBTO	Х		

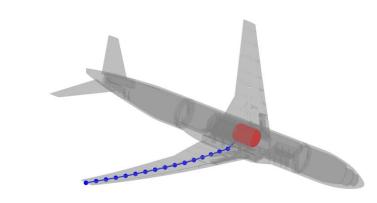
JAXA Experimental CRM Data

80% scale NASA CRM tested in JAXA 2m x 2m transonic wind tunnel

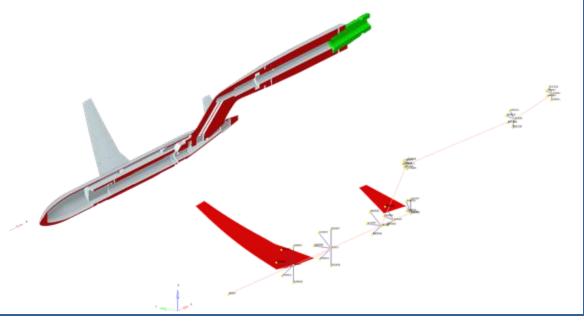
- Reynolds numbers of 1.5 and 2.3 million
- Model details
 - 80% scale NASA CRM (2.16% full-scale vehicle)
 - Wing/body/tail
 - Wind-off wing shape is the as-defined (in 2008) 1-G shape (same as NASA CRM)

Data Set	Wing	Re	Alpha	Onset	Static, Loaded Deformation	F&M	Static Taps	Kulites	Oil Flow	Wake PIV	TSP	PSP	UPSP	Strain Gauge	FEM	Release Status	DPW Buffet WG Case
A.1	Steady	2.3	-2 to 6 every ~1.2	~3.7 (**)	Х	Х	Х		Х	Х						Public	N/A
A.2	Steady	2.3	-2 to 7	~3.7 (**)	Х	Х	Х				Х	Х				N/A	N/A
B.1	Unsteady Wing (*)	1.5	4.84, 5.89	Unknown	X [1]	Х		Х								Released [2]	2
B.2	Unsteady Wing (*)	2.3	-2 to 7	3.7		Х		Х					Х	Х	Released [3]	Requested	3

(*) Same wing, but different tripping dots heights accounting for different Reynolds numbers (**) Strictly speaking, steady and unsteady wings are different, but the onset might be similar <u>https://cfdws.chofu.jaxa.jp/apc/dpw</u>


Released on: <u>https://cfdws.chofu.jaxa.jp/apc/dpw/geometry.html</u>
 Released on: <u>https://cfdws.chofu.jaxa.jp/apc/dpw/upc.html</u>
 Released on: <u>https://cfdws.chofu.jaxa.jp/apc/dpw/</u>

Finite Element Models


• NASA CRM Model:

- Tet-blasted full-span FEM, clamped inside the fuselage, in-between the wings (red cylinder)
- How to extend clamped BC back to the sting attachment near the tail?
- It would not be easy to halve this model into a semi-span version
- We have also created a semi-span equivalent beam model (blue)

• JAXA CRM Model:

- JAXA has created detailed full- and semi-span FEM models, but they are unsure if they can be released
- The modal content of the FEMs has been mapped onto simpler stick/plate models, and this has been released

Static Deformation Working Group: Look Ahead

NASA FEM validation

- Wing/body deformation
 - Provided with a committee-supplied unloaded wing geometry
 - Multiple grid densities and angles of attack
 - Wide variety of data at multiple Reynolds numbers

Wing/body/nacelle/pylon deformation

- Difficult problem will stretch tools and methods to maintain high-quality grids
- Optional
- Multiple grid densities and angles of attack

Buffet Working Group: Look Ahead

Rigid CRM test case

- Unsteady CFD with committee-supplied static wing geometry
- Optional
- Not all unsteady CFD codes have unsteady FSI
- Pre-buffet and post-buffet

Dynamic CRM test case

- Unsteady CFD, unsteady FSI with committee-supplied jig wing geometry
- Difficult problem will stretch tools and methods
- Extensive analysis, limited flow conditions

Workshop: Look Ahead

• Working groups will further separate/fragment, by design

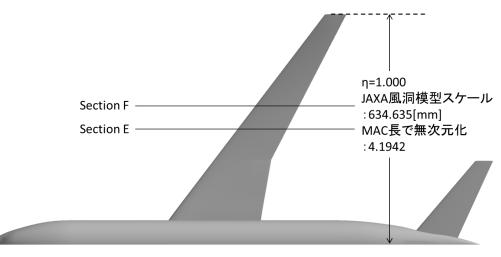
- There will be significant overlap
- Deliverables and timeline will vary between the groups
- AVIATION 2025 Special Session
 - July 21-215, 2025
 - Caesar's Forum, Las Vegas, NV
 - 21 papers and presentations
 - Date and time to be determined
 - Will hopefully include a hybrid component
- Workshop
 - June 8-12, 2026
 - Manchester Grand Hyatt, San Diego, CA
 - Possibly held the weekend before or the weekend after the conference

Outline

- 9:30 Introduction and Motivation
- 9:40 Working Group Updates
- 10:15 Mini Workshop
- 10:50 CRM Look-Ahead
- 11:25 Open Discussion
- 1:00 Bayhill 26 Available for Discussion Until 3:00

SHAPING THE FUTURE OF AEROSPACE

dpwaiaa@gmail.com

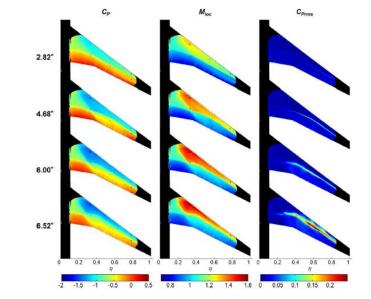


Test Case 2 Vision

- Unsteady CFD with committee-supplied static wing geometry
 - -CRM
 - Optional
 - Want to include DPW and AePW communities
 - Not all unsteady CFD codes have unsteady FSI

CRM Wing/body/tail

- JAXA Reynolds number =1.5 million
- Does not contain FSI
- Unsteady CFD with committee-supplied, already deformed grids [1]
- Provide experimentally-measured static deformation at:
 - two pre-buffet onset alphas (in consideration)
 - two post- buffet onset alphas (4.84 and 5.89 deg) [2]



^[1] Released on: <u>https://cfdws.chofu.jaxa.jp/apc/dpw/geometry.html</u>
[2] Released on: <u>https://cfdws.chofu.jaxa.jp/apc/dpw/upc.html</u>

Test Case 3 Vision

- Unsteady CFD, unsteady FSI with committee-supplied jig wing geometry
 - -CRM
 - Optional
 - Want to include DPW and AePW communities
 - Hardest analysis point
- CRM Wing/body/tail
 - JAXA Reynolds number = 2.3 million
 - Contains FSI, FEM is provided [3]
 - Provide jig (wind-off) geometry for the wing
 - Calculate both static deformation and structural dynamic response
 - Will compare deformed shape, surface pressures, etc.
- Extensive analysis, limited flow conditions
 - One alpha pre-buffet (required), one alpha post-buffet (optional)

[3] Released on: <u>https://cfdws.chofu.jaxa.jp/apc/dpw/</u>

